Love and Death: A Freund Model with Frailty

Christian Gouriéroux1 Yang Lu2

1CREST and University of Toronto

2SCOR and CREST

December 15, London
Outline

1. INTRODUCTION

2. THE MODEL
 - Jump in intensities
 - Freund model with frailty

3. EFFECT OF HETEROGENEITY AND JUMP PARAMETERS ON PRICING

4. CONCLUSION
INTRODUCTION
The aim of the paper:
How to price insurance/annuity contracts written on two heads, both at the issuing and during its lifetime.
There exist two approaches to modeling the lifetimes of the spouses:

1. The Archimedean copula model written on the spouses’ lifetimes.

 see e.g. Frees, Carriere and Valdez (1996), Carriere (2000).

2. The multi-state model
 - 4 states for describing the situation of the spouses, 1 alive, 0 dead: (1, 1), (1, 0), (0, 1), (0, 0)
 - Model directly the transition intensities between different states.
 - Therefore the intensity can jump at the death of one spouse (broken-heart syndrome).

 see e.g. Ji, Hardy and Li (2011), Spreeuw and Wang (2012).
There exist two approaches to modeling the lifetimes of the spouses:

1. The Archimedean copula model written on the spouses’ lifetimes.
 see e.g. Frees, Carriere and Valdez (1996), Carriere (2000).

2. The multi-state model
 - 4 states for describing the situation of the spouses, 1 alive, 0 dead: (1, 1), (1, 0), (0, 1), (0, 0)
 - Model directly the transition intensities between different states.
 - Therefore the intensity can jump at the death of one spouse (broken-heart syndrome).
 see e.g. Ji, Hardy and Li (2011), Spreeuw and Wang (2012).
The Archimedean copula models:

- \(S(y_1, y_2) = \psi \left(\psi^{-1}(S_1(y_1)) + \psi^{-1}(S_2(y_2)) \right) \)

- They are **factor copulas**, that is, the dependence structure between the two lifetimes has an interpretation in terms of unobservable static common risk factor, or **shared frailty (heterogeneity)** of the couple (see Section 2)

- The standard copulas have continuous copula densities, which implies symmetric (multiplicative) intensity jumps for the husband/wife at the death of his/her partner (see Section 2)
The Archimedean copula models:

- $S(y_1, y_2) = \psi\left(\psi^{-1}(S_1(y_1)) + \psi^{-1}(S_2(y_2))\right)$

- They are factor copulas, that is, the dependence structure between the two lifetimes has an interpretation in terms of unobservable static common risk factor, or shared frailty (heterogeneity) of the couple (see Section 2)

- The standard copulas have continuous copula densities, which implies symmetric (multiplicative) intensity jumps for the husband/wife at the death of his/her partner (see Section 2)
The multi-state approach:

- When both spouses are alive, the two (potential) death events are usually assumed independent. Thus the heterogeneity of the couples is omitted.

![Diagram of multi-state approach](image)
The model introduced in our paper disentangles the dependence due to the common frailty and broken-heart syndrome, that are the exogenous and endogenous sources of dependence, respectively.
THE MODEL

Jump in intensities
Freund model with frailty
(Freund [1961]). We consider four latent lifetime variables:

- X_1 (resp. X_2) potential death time of spouse 1 (resp. 2) when both are alive,
- X_3 residual lifetime of spouse 1 after the death of spouse 2,
- X_4 residual lifetime of spouse 2 after the death of spouse 1,

These variables are really latent: for each couple, either (X_2, X_3), or (X_1, X_4) can be observed, the other pair of variables being not observable jointly.
(Freund [1961]). We consider four latent lifetime variables:

- X_1 (resp. X_2) potential death time of spouse 1 (resp. 2) when both are alive,
- X_3 residual lifetime of spouse 1 after the death of spouse 2,
- X_4 residual lifetime of spouse 2 after the death of spouse 1,

These variables are really latent: for each couple, either (X_2, X_3), or (X_1, X_4) can be observed, the other pair of variables being not observable jointly.
The observable variables are:

\[
\begin{align*}
Y_1 &= \min(X_1, X_2) + X_3 \mathbb{1}_{X_2 < X_1}, \\
Y_2 &= \min(X_1, X_2) + X_4 \mathbb{1}_{X_1 < X_2},
\end{align*}
\]

where \(\min(X_1, X_2) = \min(Y_1, Y_2) \) is the time of the first death, and \(\mathbb{1}_{X_1 < X_2} \) defines the regime:

- \(\mathbb{1}_{X_1 < X_2} = 1 \), if spouse 1 dies first,
- \(\mathbb{1}_{X_1 < X_2} = 0 \), otherwise.
The following summaries of the distribution of latent variables characterize the law of the couple \((Y_1, Y_2)\):

- the joint survivor function of \(X_1, X_2\):

 \[S_{12}(x_1, x_2) = \mathbb{P}(X_1 > x_1, X_2 > x_2), \]

- the survivor function of \(X_3\) given \(X_2 = \min(X_1, X_2) = z\):

 \[S_3(x_3|z) = \mathbb{P}\left[X_3 > x_3|X_2 = \min(X_1, X_2) = z \right]. \]

- the survivor function of \(X_4\) given \(X_1 = \min(X_1, X_2) = z\):

 \[S_4(x_4|z) = \mathbb{P}\left[X_4 > x_4|X_1 = \min(X_1, X_2) = z \right]. \]
The following summaries of the distribution of latent variables characterize the law of the couple \((Y_1, Y_2)\):

- the joint survivor function of \(X_1, X_2\):
 \[S_{12}(x_1, x_2) = \Pr(X_1 > x_1, X_2 > x_2), \]
- the survivor function of \(X_3\) given \(X_2 = \min(X_1, X_2) = z\):
 \[S_3(x_3|z) = \Pr[X_3 > x_3|X_2 = \min(X_1, X_2) = z]. \]
- the survivor function of \(X_4\) given \(X_1 = \min(X_1, X_2) = z\):
 \[S_4(x_4|z) = \Pr[X_4 > x_4|X_1 = \min(X_1, X_2) = z]. \]
Jump in intensities

- When both spouses are alive, the mortality intensity of spouse 1 is:

\[
\lambda_1(y|Y_1 > y, Y_2 > y) = -\frac{\partial}{\partial y_1} \log S_{12}(y, y),
\]

which is the crude intensity.

- When spouse 2 dies at date \(y\), the mortality intensity of 1 becomes:

\[
\lambda_1(y|Y_1 > y, Y_2 = y) = -\frac{\partial}{\partial y_1} \log S_3(0, y),
\]
Jump in intensities

1. When both spouses are alive, the mortality intensity of spouse 1 is:

\[
\lambda_1(y|Y_1 > y, Y_2 > y) = -\frac{\partial}{\partial y_1} \log S_{12}(y, y),
\]

which is the crude intensity.

2. When spouse 2 dies at date \(y \), the mortality intensity of 1 becomes:

\[
\lambda_1(y|Y_1 > y, Y_2 = y) = -\frac{\partial}{\partial y_1} \log S_3(0, y),
\]
Therefore the multiplicative intensity jump (also called cross-ratio function) for spouse 1 is:

\[
\gamma_{1|2}(y) = \frac{\lambda_1(y| Y_1 > y, Y_2 = y)}{\lambda_1(y| Y_1 > y, Y_2 > y)} = \frac{\partial}{\partial y_1} \log S_3(0, y) \frac{\partial}{\partial y_1} \log S_{12}(y, y).
\]

In general \(\gamma_{1|2}(y) \neq \gamma_{2|1}(y) \).

In a standard copula-based model, we get:

\[
\gamma_{1|2}(y) = \frac{\partial}{\partial y_1} S(y, y) \frac{\partial}{\partial y_2} S(y, y) \frac{\partial^2}{\partial y_1 \partial y_2} S(y, y).\]

Therefore \(\gamma_{1|2}(y) = \gamma_{2|1}(y) \), since \(\frac{\partial^2 S}{\partial y_1 \partial y_2} = \frac{\partial^2 S}{\partial y_2 \partial y_1} \) by continuity, and we cannot have asymmetric reactions of the spouses.
Therefore the multiplicative intensity jump (also called cross-ratio function) for spouse 1 is:

\[
\gamma_{1|2}(y) = \frac{\lambda_1(y \mid Y_1 > y, Y_2 = y)}{\lambda_1(y \mid Y_1 > y, Y_2 > y)} = \frac{\partial}{\partial y_1} \log S_3(0, y) \frac{\partial}{\partial y_1} \log S_{12}(y, y).
\]

In general \(\gamma_{1|2}(y) \neq \gamma_{2|1}(y)\).

In a standard copula-based model, we get:

\[
\gamma_{1|2}(y) = \frac{\partial}{\partial y_1} S(y, y) \frac{\partial}{\partial y_2} S(y, y) \frac{\partial^2}{\partial y_1 \partial y_2} S(y, y).
\]

Therefore \(\gamma_{1|2}(y) = \gamma_{2|1}(y)\), since \(\frac{\partial^2 S}{\partial y_1 \partial y_2} = \frac{\partial^2 S}{\partial y_2 \partial y_1}\) by continuity, and we cannot have asymmetric reactions of the spouses.
Freund model with frailty

The model extends the basic Freund model by introducing a heterogeneity variable F in the intensities.

- marginal intensities of the latent variables conditional on F: $a_1(x_1|F), a_2(x_2|F), a_3(x_3|x_2, F), a_4(x_3|x_1, F)$.

- marginal cumulative intensities: $A_1(x_1|F), A_2(x_2|F), A_3(x_3|x_2, F), A_4(x_3|x_1, F)$.

- X_1 and X_2 are independent given F.

- The conditional mortality jump is defined by:

$$
\gamma_{1|2}(y|F) = \frac{a_3(0|y, F)}{a_1(y|F)}.
$$
Freund model with frailty

The model extends the basic Freund model by introducing a heterogeneity variable F in the intensities.

- marginal intensities of the latent variables conditional on F:
 $a_1(x_1|F), a_2(x_2|F), a_3(x_3|x_2, F), a_4(x_3|x_1, F)$.

- marginal cumulative intensities:
 $A_1(x_1|F), A_2(x_2|F), A_3(x_3|x_2, F), A_4(x_3|x_1, F)$.

- X_1 and X_2 are independent given F.

- The conditional mortality jump is defined by:

$$\gamma_{1|2}(y|F) = \frac{a_3(0|y, F)}{a_1(y|F)}.$$
The conditional intensities are used to deduce:

- first the conditional distribution of the variables \((Y_1, Y_2)\) given frailty \(F\),
- next the distribution of \((Y_1, Y_2)\), when frailty \(F\) is integrated out.
In particular we get the following expressions of the mortality jump, when spouse 2 dies first at time y:

Theorem

$$\gamma_{1|2}(y) = \frac{\mathbb{E}^{Q_y}[a_3(0|y,F)a_2(y|F)]}{\mathbb{E}^{Q_y}[a_1(y|F)]\mathbb{E}^{Q_y}[a_2(y|F)]},$$

where Q_y denotes the probability distribution of the frailty among the surviving couples at time y:

$$\frac{dQ_y}{dQ_0} = \frac{e^{-A_1(y|F) - A_2(y|F)}}{\mathbb{E}^{Q_0}[e^{-A_1(y|F) - A_2(y|F)}]}.$$
Corollary

By a change of measure, we have:

\[\gamma_{1|2}(y) = \mathbb{E}^{\tilde{Q}_y}[\gamma_{1|2}(y|F)] \frac{\mathbb{E}^{Q_y}[a_1(y|F)a_2(y|F)]}{\mathbb{E}^{Q_y}[a_1(y|F)]\mathbb{E}^{Q_y}[a_2(y|F)]}, \]

where \(\tilde{Q}_y \) is the density of the frailty \(F \) among couples who die simultaneously at time \(y \):

\[\frac{d\tilde{Q}_y}{dQ_y} = \frac{a_1(y|F)a_2(y|F)}{\mathbb{E}^{Q_y}[a_1(y|F)a_2(y|F)]}, \]
Special case: univariate shared frailty

If the frailty F is univariate, and

$$a_1(x_1|F) = a_1(x_1)F, \quad a_3(x_3|x_2, F) = a_3(x_3|x_2)F,$$
$$a_2(x_2|F) = a_2(x_2)F, \quad a_4(x_4|x_1, F) = a_4(x_4|x_1)F,$$

then $\gamma_{1|2}(y|F) = \frac{a_3(0|y,F)}{a_1(y|F)} = \frac{a_3(0|y)}{a_1(y)}$ does not depend on F, and:

$$\gamma_{1|2}(y) = \gamma_{1|2}(y|F) \frac{\mathbb{E}^Q_y[F^2]}{\left(\mathbb{E}^Q_y[F]\right)^2} \geq \gamma_{1|2}(y|F).$$

- Failing to control for the unobserved heterogeneity creates a bias.

- $\gamma_{1|2}(y) = \gamma_{2|1}(y) \iff \gamma_{1|2}(y|F) = \gamma_{2|1}(y|F)$.

Christian Gouriéroux, Yang Lu Love and Death: A Freund Model with Frailty
Special case: univariate shared frailty
If the frailty F is univariate, and

$$a_1(x_1|F) = a_1(x_1)F,$$
$$a_2(x_2|F) = a_2(x_2)F,$$
$$a_3(x_3|x_2, F) = a_3(x_3|x_2)F,$$
$$a_4(x_4|x_1, F) = a_4(x_4|x_1)F,$$

then $\gamma_{1|2}(y|F) = \frac{a_3(0|y,F)}{a_1(y|F)} = \frac{a_3(0|y)}{a_1(y)}$ does not depend on F, and:

$$\gamma_{1|2}(y) = \gamma_{1|2}(y|F) \frac{\mathbb{E}_{Q_y}[F^2]}{\left(\mathbb{E}_{Q_y}[F]\right)^2} \geq \gamma_{1|2}(y|F).$$

- Failing to control for the unobserved heterogeneity creates a bias.

$$\gamma_{1|2}(y) = \gamma_{2|1}(y) \iff \gamma_{1|2}(y|F) = \gamma_{2|1}(y|F).$$
Interpretation of Archimedean copulas

Theorem (Marshall, Olkin [1988])

In a shared frailty model with no mortality jumps, that is,

\[
a_3(x_3|z) = a_1(x_3 + z), \quad a_4(x_4|z) = a_2(x_4 + z),
\]

the survivor copula of the couple \((Y_1, Y_2)\) is Archimedean, its generator function \(\psi\) is the Laplace transform of the frailty distribution: \(\psi(u) = \mathbb{E}[e^{-uF}]\).

- Conversely, most Archimedean copulas admit this frailty representation, e.g. Clayton [1978], Frank [1979], Gumbel [1960], Ali-Mikhail-Haq [1978].
- In other words, Archimedean copula models implicitly ignore the broken-heart syndrome.
Interpretation of Archimedean copulas

Theorem (Marshall, Olkin [1988])

In a shared frailty model with no mortality jumps, that is,

\[a_3(x_3|z) = a_1(x_3 + z), \quad a_4(x_4|z) = a_2(x_4 + z), \]

the survivor copula of the couple \((Y_1, Y_2)\) is Archimedean, its generator function \(\psi\) is the Laplace transform of the frailty distribution: \(\psi(u) = \mathbb{E}[e^{-uF}]\).

- Conversely, most Archimedean copulas admit this frailty representation, e.g. Clayton [1978], Frank [1979], Gumbel [1960], Ali-Mikhail-Haq [1978].
- In other words, Archimedean copula models implicitly ignore the broken-heart syndrome.
EFFECT OF HETEROGENEITY AND JUMP PARAMETERS ON PRICING
Characteristics of the contracts

<table>
<thead>
<tr>
<th>Type of contracts</th>
<th>Premium payment period</th>
<th>Benefit payment period/date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint life</td>
<td>([z_0, \min(Y_1, Y_2)])</td>
<td>at (\min(Y_1, Y_2))</td>
</tr>
<tr>
<td>Last survivor</td>
<td>([z_0, \max(Y_1, Y_2)])</td>
<td>at (\max(Y_1, Y_2))</td>
</tr>
<tr>
<td>Reversionary annuity</td>
<td>([z_0, \min(Y_1, Y_2)])</td>
<td>from (\min(Y_1, Y_2)) to (\max(Y_1, Y_2))</td>
</tr>
<tr>
<td>Individual life</td>
<td>([z_0, Y_1])</td>
<td>at (Y_1)</td>
</tr>
</tbody>
</table>

\(z_0\): underwriting age.
Simulation study

- Assume F is gamma distributed, $\gamma(k, 1/k)$ for couples of age 30. (But evolves as the population ages).
- Specify parametric laws for intensities of latent variables.
- Assume constant, continuous time premium rate and interest rate.
- Assume symmetric constant jumps $\gamma_{1|2} = \gamma_{2|1} = \gamma$.
- Calculate the price of insurance contracts at different underwriting ages.

For instance, for a last survivor policy, the formula of the premium is:

$$a_0(r) = r \frac{\mathbb{E}[e^{-r\max(Y_1, Y_2)-z_0}|Y_1 \geq z_0, Y_2 \geq z_0]}{1 - \mathbb{E}[e^{-r\max(Y_1, Y_2)-z_0}|Y_1 \geq z_0, Y_2 \geq z_0]}$$
Effect of jump on prices

<table>
<thead>
<tr>
<th></th>
<th>Last survivor</th>
<th>Reversion annuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma = 5$</td>
<td>0.0194</td>
<td>0.134</td>
</tr>
<tr>
<td>$\gamma = 3$</td>
<td>0.0182</td>
<td>0.181</td>
</tr>
<tr>
<td>$\gamma = 1$ (No jump)</td>
<td>0.0153</td>
<td>0.318</td>
</tr>
</tbody>
</table>

Table: Effect of the broken heart syndrome on premium rates with a fixed heterogeneity distribution ($k = 6$), at age 30.
Effect of heterogeneity on prices

<table>
<thead>
<tr>
<th>k</th>
<th>Joint life</th>
<th>Last survivor</th>
<th>Reversion annuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0334</td>
<td>0.0265</td>
<td>0.188</td>
</tr>
<tr>
<td>6</td>
<td>0.0364</td>
<td>0.0287</td>
<td>0.199</td>
</tr>
<tr>
<td>10</td>
<td>0.0371</td>
<td>0.0292</td>
<td>0.203</td>
</tr>
</tbody>
</table>

Table: Effect of the heterogeneity on premium rates with a fixed jump parameter ($\gamma = 5$), at age 50.
CONCLUSION
Conclusion

- The Freund model with frailty is very flexible to introduce non symmetric jumps for males and females.
- It allows to disentangle dependence due to the frailty and the broken-heart syndrome.
- Simulation studies show that both effects are important when pricing insurance contracts.

Outlook
- Good joint insurance portfolio data are essential for estimation.
Thanks for your attention. Questions / Comments?