CARTELS AND TACIT COLLUSION
Advanced Industrial Organization 1

THIBAUD VERGÉ
CREST-LEI

ENSAE 3A / Master APE (2009-2010)
Outline

1. Introduction
2. Basic Theoretical Model
3. Factors Facilitating Collusion
4. Informational issues
5. Cartels and Competition Policy
Fighting cartels is at the core of competition policy.

Biggest European Cartel Cases

<table>
<thead>
<tr>
<th>Year</th>
<th>Industry</th>
<th>Fine (m€)</th>
<th>Fines (m€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Car Glass</td>
<td>1384</td>
<td>Saint-Gobain (896), Pilkington (370)</td>
</tr>
<tr>
<td>2009</td>
<td>Gaz</td>
<td>1106</td>
<td>E.O.N (553), GDF-Suez (553)</td>
</tr>
<tr>
<td>2007</td>
<td>Elevators</td>
<td>992</td>
<td>ThyssenKrupp (480)</td>
</tr>
<tr>
<td>2001</td>
<td>Vitamins</td>
<td>790</td>
<td>Hoffmann-LaRoche (462)</td>
</tr>
<tr>
<td>2007</td>
<td>Switchgear</td>
<td>750</td>
<td>Siemens (396)</td>
</tr>
</tbody>
</table>

In France

<table>
<thead>
<tr>
<th>Year</th>
<th>Industry</th>
<th>Fine (m€)</th>
<th>Fines (m€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Temporary Work</td>
<td>94</td>
<td>Manpower (42), Adecco (32)</td>
</tr>
<tr>
<td>2008</td>
<td>Steel</td>
<td>575</td>
<td>ArcelorMittal (309), KDI (169)</td>
</tr>
<tr>
<td>2005</td>
<td>Mobiles</td>
<td>534</td>
<td>Orange (256), SFR (220)</td>
</tr>
</tbody>
</table>
What is Collusion?

Explicit or Tacit Collusion

- **Collusion** \equiv collusive agreement that should be outlawed
- **Collusion** \approx high prices, prices above the “competitive” level
- **Explicit Collusion**: firms act through an organized cartel
- **Tacit Collusion**: firms maintain high prices in a non-cooperative way
Reading List

Prisoners’ Dilemma

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>(2,2)</td>
<td>((-1,3))</td>
</tr>
<tr>
<td>NC</td>
<td>(3,-1)</td>
<td>((0,0))</td>
</tr>
</tbody>
</table>

- Unique Nash Equilibrium: No cooperation (strictly dominant strategies), zero payoffs.
- Cooperation is Pareto dominant
- *When is cooperation possible?*
The Main Ingredients of Collusion

- Suppose the game is **repeated** over time

- Players could agree to cooperate (and obtain higher payoffs)

- However, at any stage, a player would have a strong incentive to **deviate**

- In order for cooperation to be sustainable, the rival player needs to be able to **detect the deviation** . . .

- . . . and to enforce the “agreed” **(credible) punishment**
Outline

1. Introduction
2. Basic Theoretical Model
3. Factors Facilitating Collusion
4. Informational issues
5. Cartels and Competition Policy
(Tacit) Collusion in a General Framework

The important variables

1. π^C the per-firm collusive profit
2. π^D the profit of the deviating firm
3. π^{NC} the per-firm non-cooperative profit (i.e. the equilibrium payoff in the Nash-equilibrium of the static game)
4. δ the discount factor

Idea: Collusion is a SPNE if

The short term gain of deviation is lower than the long term loss (punishment).
Unique Subgame Perfect Nash Equilibrium

Backward Induction: Start with the last period

- Last stage \iff Static Game
- Unique Nash Equilibrium, without cooperation.

Penultimate Period

- Last period profits are not affected by the history
- Penultimate stage \iff Static Game
- Unique Nash Equilibrium, without cooperation.

Unique SPNE

NE of the static game repeated over time. No cooperation.
Multiple Subgame Perfect Nash-Equilibria

General Result

- The NE of the static game is always a SPNE of the infinitely repeated game.
- No cooperation is always a SPNE.

Formally

- In an infinitely repeated game, strategies are complex.
- History: \(h_t = (s_1,0, s_2,0; \ldots; s_1,t-1, s_2,t-1) \)
- Choice at \(t \) depends on \(h_t \).
Cooperation (collusion) as a SPNE?

Question
- Can collusion be an equilibrium?
- Are there other equilibria?

Focus on particular equilibria with **trigger strategies**
- If nobody has deviated in the past, each player chooses to cooperate at date \(t \)
- If somebody deviates from the collusive path at date \(t - 1 \), then from \(t \) onwards players revert to the non-cooperation solution

Trigger strategies or reversal to Nash
Existence condition for a collusive equilibrium

Short-term gain (at \(t = 0 \))

- Deviation: \(\pi^D \)
- Collusion: \(\pi^C \)
- **Gain:** \(\pi^D - \pi^C \)

Long Term Loss

- Deviation: \(\sum_{t=1}^{+\infty} \delta^t \pi^{NC} = \frac{\delta}{1-\delta} \pi^{NC} \)
- Collusion: \(\sum_{t=1}^{+\infty} \delta^t \pi^C = \frac{\delta}{1-\delta} \pi^C \)
- **Loss:** \(\frac{\delta}{1-\delta} (\pi^C - \pi^{NC}) \)
Basic Theoretical Model
Infinitely Repeated Game

Tradeoff Today / Future: Summary

Collusion as an equilibrium iff loss > gain

- **Loss:** \(\frac{\delta}{1-\delta} (\pi^C - \pi^{NC}) \)
- **Gain:** \(\pi^D - \pi^C \)

\[
\frac{\delta}{1-\delta} (\pi^C - \pi^{NC}) > \pi^D - \pi^C \iff \delta > \tilde{\delta} \equiv \frac{\pi^D - \pi^C}{\pi^D - \pi^{NC}}
\]

Conclusion

If firms are patient enough \((\delta > \tilde{\delta}) \) there exists a subgame perfect Nash equilibrium (with trigger strategies) with collusion.
Price Competition with Perfect Substitutes

Bertrand Competition between n firms

- $\pi^{NC} = 0$
- $\pi^C = \frac{\Pi^M}{n}$
- $\pi^D = \Pi^M (-\varepsilon)$

Discount Factor Threshold

$$\tilde{\delta} = \frac{\Pi^M - \frac{\Pi^M}{n}}{\Pi^M - 0} = \frac{n - 1}{n} = 1 - \frac{1}{n}$$
Outline

1. Introduction
2. Basic Theoretical Model
3. Factors Facilitating Collusion
4. Informational issues
5. Cartels and Competition Policy
Factors Facilitating Collusion

1. Concentration
2. Entry
3. Cross-ownership
4. Regularity and frequency of orders
5. Evolution of demand
6. Symmetry
7. Multi-market contacts
8. Excess Capacities
9. **Price transparency / Exchange of information**
10. Antitrust enforcement
11. Leniency programs
Concentration and Entry

Concentration

- Many identical firms under price competition
- The gains from collusion are smaller the larger the number of firms
- However, non-cooperation and deviation profits do not depend on the number of firms
- **Collusion is easier to sustain when the number of players is smaller**

Entry

- The easier the entry into an industry, the more difficult to sustain collusive prices
- If the entrant behaves aggressively, the incumbent firms (cartel members) will have to react by lowering prices
- If the entrant is willing to join the cartel, then collusion is more difficult as the number of firms increases
Factors Facilitating Collusion

Structural Factors

Cross-ownership

Symmetric case with 2 firms

- Two identical firms competing in prices, each owning a share α of the rival firm
- $\pi^{NC} = 0$
- $\pi^C = \frac{(1+\alpha)\Pi^M}{2}$
- $\pi^D = \Pi^M + 0$
- Therefore: $\tilde{\delta} = \frac{\Pi^M - (1+\alpha)\Pi^M}{\Pi^M - 0} = \frac{1-\alpha}{2}$

Conclusion

Collusion is easier when firms own shares of their rivals
Evolution of Demand

Stochastic Demand
- At each period, demand can be either high \(d_H \) or low \(d_L \)
- Demand shocks are i.i.d.
- Equal probabilities
- We denote by:
 - \(\Pi^M_H \) and \(\Pi^M_L \) the corresponding monopoly (collusive) profits
 - \(\Pi^M = \frac{\Pi^M_L + \Pi^M_H}{2} \) the expected monopoly profit

Collusion and deviation expected profits (state \(s = H, L \) at \(t \))
- **Collusion:** \(\frac{\Pi^M_s}{2} + (\delta + \ldots + \delta^t + \ldots) \frac{\Pi^M}{2} = \frac{\Pi^M_s}{2} + \frac{\delta \Pi^M}{2(1-\delta)} \)
- **Deviation:** \(\Pi^M_s + (\delta + \ldots + \delta^t + \ldots)0 = \Pi^M_s \)
Collusion is sustainable whenever:

\[
\frac{\Pi^M_s}{2} + \frac{\delta \Pi^M}{2(1 - \delta)} > \Pi^M_s \iff \frac{\delta \Pi^M}{1 - \delta} > \Pi^M_s \iff \delta > \tilde{\delta}_s \equiv \frac{\Pi^M_s}{\Pi^M + \Pi^M_s}
\]

Conclusion

- Note that \(\Pi^M_H > \Pi^M_L \iff \tilde{\delta}_H > \tilde{\delta}_L\)
- Collusion is more difficult to sustain when demand is high
- Short term gains are higher when demand is high
- Long term (expected) losses are the same in the two states
Growing and Declining Industries

Evolving industries

- Demand is certain but changes over time
- Monopoly profit in period t is given by $\theta^t \Pi^M$

Conclusion

- We then have: $\tilde{\delta}(\theta) = \frac{1}{2\theta}$
- Collusion is easier to sustain in growing industries ($\theta > 1$) than in declining industries ($\theta < 1$)
- At $t = 0$, short term gains are identical but long term losses are higher when future demand is expected to be higher
Outline

1. Introduction
2. Basic Theoretical Model
3. Factors Facilitating Collusion
4. Informational issues
5. Cartels and Competition Policy
Identifying Deviations to Sustain Collusion

- **Stigler** (*JPE*, 1964): Collusion would break down because of secret price cuts

- **Green and Porter**: If actual prices are not observable, collusion is more difficult to sustain, but could still arise in equilibrium.

- With secret price cuts, a firm does not know if a low demand is due to a price cut (deviation from the collusive path) or a negative demand shock (on the collusive path)

- **Idea**: trigger a price war (reversal to Nash) but for a limited number of periods

- **A period of low prices (price war) does not necessarily mean that there is no collusion**

A simplified version

- n identical firms selling a homogenous product.
- Price competition.
- Uncertain demand shocks (i.i.d over time): demand can be either low ($D(p) = 0$ for any price p) with probability α or high ($D(p) > 0$).
- Firms **never** observe the actual state of demand.
- Firms **do not** observe prices set by rival firms.

→ A firm facing a zero demand does not know whether it is:
 1. Because the demand was low.
 2. Because some rival(s) undercut its price.
Temporary Price Wars

Temporary Price Wars in Equilibrium

- Each firm sets the collusive price p^m at the outset of the game.
- It continues to do so as long as all firms have positive demands.
- When at least one firm observes zero demand (which is assumed to be common knowledge), the industry enters the “punishment phase”: each firm sets price equal to marginal costs for the next T periods.
- Collusive phases restarts at the end of the “price war”.

Some notations

- V^+ represents the present discounted value of a firm in each period which belongs to the collusive phase.
- V^- represents the present discounted value of a firm at the start of the punishment phase.
Temporary Price Wars

Relationships between V^+ and V^-

- The following two equations hold:

$$V^+ = (1 - \alpha) \left(\frac{\pi(p^m)}{n} + \delta V^+ \right) + \alpha \delta V^- \quad \text{and} \quad V^- = \delta^T V^+$$

- This yields:

$$V^+ = \frac{(1 - \alpha) \frac{\pi(p^m)}{n}}{1 - (1 - \alpha) \delta - \alpha \delta^T+1} \quad \text{and} \quad V^- = \delta^T V^+$$

Collusion is possible as long as

$$V^+ \geq (1 - \alpha) \left(\pi(p^m) + \delta V^- \right) + \alpha \delta V^-$$

i.e. (after some computation . . .)

$$[\delta n(1 - \alpha) - (n - 1)] + \delta^{T+1} (\alpha n - 1) \geq 0 \quad (1)$$
When is collusion feasible?

Three possible cases

1. If $\alpha < \alpha_1 \equiv 1 - \frac{n-1}{n\delta}$ (which may be impossible if δ is too small or n is too large), then the left term is positive while the right term is negative. There may therefore exist a values of T that satisfy (1).

2. If $\alpha_1 \geq \alpha < \alpha_2 \equiv \frac{1}{n}$, both terms are negative and equation (1) never holds.

3. If $\alpha \leq \alpha_2$, the left term is negative while the right term is positive. But:

 $$n - 1 - \delta n(1 - \alpha) = (n - 1)(1 - \delta) + \delta(\alpha n - 1) > \delta(\alpha n - 1) > \delta^{T+1}(\alpha n - 1),$$

 and thus equation (1) cannot hold.

Collusion is feasible whenever:

$$\alpha < \alpha_1 \quad \text{and} \quad T \leq T^{\text{min}} \equiv (\ln \delta)^{-1} \ln \left(\frac{\delta n(1 - \alpha) - (n - 1)}{\delta(1 - \alpha n)} \right)$$

(2)
Some Conclusions

- Temporary price wars may help sustaining collusion when deviations are not easily observable.

- Collusion is not feasible if the probability to be in the bad state is too high.

- The “punishment period” needs to be longer when the probability of the being in the bad state increases (i.e. $\partial T^{\text{min}} / \partial \alpha > 0$).
Information Exchange

Past (or Present) Prices and Quantities

Exchanging information about past (or present)

- (Individual) prices and/or quantities
- Aggregate demand

helps collusion.

- French mobile phone cartel (€(534m) fines for Orange, SFR and Bouygues Telecom)

Future Prices

Private (“cheap talk”) or public (credible) announcements about future prices help to sustain collusion

- Airline Tariff Publishers (ATP) in the US
- British Airways (fuel surcharges)
- Collusion in multi-unit auctions
Other Practices that Facilitate Collusion

Most-Favored Nation Clauses

- Also called *price matching clauses*
- Way of exchanging information through consumers
- Note that price comparison engines (*Kelkoo, ...*) or online agencies co-owned by rivals (*Expedia, Opodo, Orbitz, ...*) can also serve the same purpose.

Resale Price Maintenance

- Jullien and Rey (*RAND Journal of Economics, 2007*)
- Resale price maintenance prevents retailers from reacting to local demand shocks.
- Helps to sustain collusion among producers since deviations are more easily detected.
2 differentiated producers, selling through different retailers.
Price competition between retailers.

Uncertain local demand shocks (i.i.d over time and across products):

\[D_i (p_i, p_j) = d + \varepsilon_i - p_i + \sigma p_j, \text{ with } \varepsilon_i \sim U ([-\Delta, \Delta]). \]

The exact terms of the contracts between a manufacturer and its retailer is never observed by the rival manufacturer.
Retail prices are observed at the end of each period.
Contracts consists of two-part tariffs (of the form \(T_i(q) = w_i q + A_i \)) and (only allowed) an imposed retail price.
A new retailer at each period (⇔ myopic retailers + no long term contracts). This implies that retailers are in essence passive.
Equilibrium of the Static Game

Timing of the stage game

1. Producers make take-it-or-leave-it offers.
2. Retailer R_i observes ε_i and chooses its retail price p_i (unless RPM is used).
3. Demands and profits are realized.

Retailer R_i’s pricing decision

$$p_i = \arg \max_p (p_i - w_i) \left(d + \varepsilon_i - p_i + \sigma p_j^e \right)$$

$$= \frac{d + \varepsilon_i + w_i + p_j^e}{2} = \frac{d + w_i + p_j^e}{2} + \frac{\varepsilon_i}{2} = p_i^e + \frac{\varepsilon_i}{2}$$
Equilibrium of the Static Game

Retailer R_i’s expected profit

\[
ER_i(w_i) = E \left(\left(p_i^e + \frac{\varepsilon_i}{2} - w_i \right) \left(d + \varepsilon_i - \left(p_i^e + \frac{\varepsilon_i}{2} \right) + \sigma p_j^e \right) \right) \quad (3)
\]

Manufacturer M_i’s expected profit

\[
EM_i = E \left(w_i \left(d + \varepsilon_i - \left(p_i^e + \frac{\varepsilon_i}{2} \right) + \sigma p_j^e \right) \right) + ER_i
\]
\[
= E \left(\left(p_i^e + \frac{\varepsilon_i}{2} \right) \left(d + \varepsilon_i - \left(p_i^e + \frac{\varepsilon_i}{2} \right) + \sigma p_j^e \right) \right)
\]
\[
= p_i^e \left(d - p_i^e + \sigma p_j^e \right) + \frac{1}{4} E \left(\varepsilon_i^2 \right) = \pi \left(p_i^e, p_j^e \right) + v(\Delta).
\]

\[\equiv \pi(p_i^e, p_j^e)\]

\[\equiv v(\Delta) = \frac{\Delta^2}{12}\]
Equilibrium of the Static Game

Expected equilibrium prices:

\[p_i^e = \arg \max_p \pi(p, p_j^e) = \frac{d + \sigma p_j^e}{2} \implies w_1^N = w_2^N = 0. \]

“Competitive” retail prices:

\[p_1^N = p_2^N = p^N \equiv \frac{d}{2 - \sigma}. \]

Manufacturer’s expected profits:

\[EM_1^N = EM_2^N = \Pi(p^N) + \nu(\Delta). \]

RPM in the Static Game

If \(M_i \) imposes a retail price \(p_i \), its expected profit is only \(\pi(p_i, p_j^e) \).

It thus loses the benefit of retail prices that adjust to local demand shocks (i.e., loses \(\nu(\Delta) \)).

RPM is never used in the static game.
Scope for Collusion

Definition

- Collusive prices:
 \[
 \left(p_1^M, p_2^M \right) = \arg\max_{(p_1, p_2)} \left(\pi(p_1, p_2) + \pi(p_2, p_1) + 2\nu(\Delta) \right).
 \]
- Recall: \(\Pi(p) = \pi(p, p) \).

Assumptions

\[
k \leq \Pi(p^N) + \nu(\Delta) \leq \Pi(p^M)
\]

- **First part:** \(k \) is a per-period fixed cost paid by the manufacturers. The assumption ensures that selling is indeed profitable.
- **Second inequality:** There is scope for collusion (under RPM).
Collusion without RPM

- Denote by \(\Pi^F \) (resp. \(\Pi_F \)) the maximal (resp. minimal) average per-period profit that can be obtained in a fully symmetric equilibrium, and by \(s^F \) (resp. \(s_F \)) the corresponding strategy.

- **Most profitable strategy:** the strategy \(s^F \) is of the form “charge an expected price equal to \(p^F \) as long as past retail prices belong to \([p^F - \frac{\Delta}{2}, p^F + \frac{\Delta}{2}]\), and \(s_F \) otherwise.

Necessary Condition 1: Perfect Detection

\[
\max_p \pi(p, p^F) - \Pi(p^F) \leq \frac{\delta}{1 - \delta} \left(\Pi(p^F) + v(\Delta) - \Pi_F \right)
\]
(PD)
Collusion without RPM

Necessary Condition 2: Small Deviations

- Small deviations are less easily detected.
- Indeed, if \(p \in [p^F - \Delta, p^F + \Delta] \), the deviation may be undetected.
- Therefore, the following condition must also hold for any \(p \in [p^F - \Delta, p^F + \Delta] \):

\[
\pi(p, p^F) - \Pi(p^F) \leq \frac{\delta}{1 - \delta} \frac{|p - p^F|}{\Delta} \left(\Pi(p^F) + v(\Delta) - \Pi_F \right) \quad \text{(SD)}
\]

Collusion without RPM

Most profitable collusive equilibrium is such that \(p^F \) maximizes \(\Pi(p^F) + v(\Delta) \) subject to (PD) and (SD).
When RPM is used on the collusive path, all deviations are automatically detected.

Necessary and sufficient condition

$$\max_p \pi (p, p^{RPM}) + v(\Delta) - \Pi (p^{RPM}) \leq \frac{\delta}{1 - \delta} \left(\Pi (p^{RPM}) - \Pi_{RPM} \right)$$

Collusion with RPM

Most profitable collusive equilibrium is such that p^{RPM} maximizes $\Pi (p^{RPM})$ subject to (RPM).
Comparing without / with RPM

Constraints (PD) and (RPM)

\[
\max_p \pi(p, p^F) + \nu(\Delta) + \frac{\delta}{1 - \delta} \Pi_F \leq \frac{1}{1 - \delta} \left(\Pi(p^F) + \nu(\Delta) \right) \quad \text{(PD)}
\]

\[
\max_p \pi(p, p^{RPM}) + \nu(\Delta) + \frac{\delta}{1 - \delta} \Pi_{RPM} \leq \frac{1}{1 - \delta} \Pi(p^{RPM}) \quad \text{(RPM)}
\]

RPM

- Facilitates collusion:
 - \(\Pi_{RPM} < \Pi_F \), i.e., harsher punishments.
 - Perfect detection for all deviations (no equivalent to (SD)).

- But yields lower expected profits for identical average prices:
 - additional term \(\nu(\Delta) \) in (PD).
Welfare Effect and Conclusions

- **There exist values of the parameters** (especially for intermediate values of the discount factor), **for which RPM would be used** by firms to facilitate collusion.

- Retail prices are then higher on average.

- But they no longer react to local shocks.
 - With retail cost shocks, rigid prices are bad for consumers and total welfare.
 - But for **local demand shocks**, consumers prefer rigid prices.

- Overall, ambiguous effect with local demand shocks. But, in the linear demand example, **RPM can only be bad for welfare if** $\sigma \leq \frac{2}{3}$.
Detecting Collusion

- Need for hard evidence (minutes, memo, ...)
- What is a collusive price?
 - Uncertainty about price or demand
- Problems using historical price data (i.e. price evolution)
 - “Price parallelism” can be explained by common shocks
 - Unless “extreme parallelism” (e.g. Dyestuffs)
- Facilitating practices can only be stopped but not used to find firms guilty
- Tacit (*rk: requires coordination*) or explicit collusion?
Deterring Collusion (Ex ante policies)

- **Heavy punishment when detected**
 - Expected fines (fine x probability of audit), damages to “injured” parties, prison sentences

- **Black list of facilitating practices**
 - Exchange of information about individual prices and/or quantities
 - Best price clauses
 - Minority shareholdings
 - ...

- **Auction design**
Leniency programs

- As used against organized crime in order to obtain hard evidence

- **Leniency** ≡ immunity from fines and/or prison
 - Breaking trust within the cartel (preventing cartel formation but also detecting cartel more easily)
 - Saving resources for antitrust authorities

- **Ambiguous theoretical effects on deterrence**
 - Reduces the gains from collusion
 - Reinforces the possibility of punishment

- Optimal leniency programs
 - See Spagnolo (mimeo, 2000), Motta and Polo (IJIO, 2003), . . .
 - Automatic full immunity (from fines but also damages, possibly even rewards) even after an investigation has started
Leniency programs in the U.S.

- First introduced in 1978 but redesigned in 1993
- Automatic immunity from fines and prison sentences
 - Provide hard evidence before an investigation has begun
 - First arrived only and conditional on leaving the cartel
- Discretionary leniency for evidence provided once the investigation has been launched
- Number of applicants rose from 1 a year to 2 a month
Leniency program in the EU

- First introduced in 1996 (inefficient) but redesigned in 2002

- Complete immunity from fines
 - Provide hard evidence even after investigation has begun
 - First arrived only but discretionary partial immunity for second and third arrived if it helps convict firms
 - Not for the ring-leader

- Recent case (November 2006): Producers and traders of synthetic rubber fined a total of €519m
 - *Bayer* applied for leniency in December 2002 (was granted full immunity from a €204m fine)
 - Once the investigation had started, *Dow* applied for leniency (was granted partial immunity - 40% - from a €107m fine)
 - *Eni* (€272m), *Shell* (€160m), *Unipetrol* (€17.6m) and *Trade-Stomil* (€3.8m) were also involved