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Improved Matrix Uncertainty Selector

Mathieu Rosenbaum1 and Alexandre B. Tsybakov2,∗

Abstract: We consider the regression model with observation error in the
design:

y = Xθ∗ + ξ,

Z = X + Ξ.

Here the random vector y ∈ Rn and the random n× p matrix Z are observed,
the n × p matrix X is unknown, Ξ is an n × p random noise matrix, ξ ∈
Rn is a random noise vector, and θ∗ is a vector of unknown parameters to
be estimated. We consider the setting where the dimension p can be much
larger than the sample size n and θ∗ is sparse. Because of the presence of the
noise matrix Ξ, the commonly used Lasso and Dantzig selector are unstable.
An alternative procedure called the Matrix Uncertainty (MU) selector has
been proposed in Rosenbaum and Tsybakov (2010) in order to account for the
noise. The properties of the MU selector have been studied in Rosenbaum and
Tsybakov (2010) for sparse θ∗ under the assumption that the noise matrix Ξ is
deterministic and its values are small. In this paper, we propose a modification
of the MU selector when Ξ is a random matrix with zero-mean entries having
the variances that can be estimated. This is, for example, the case in the model
where the entries of X are missing at random. We show both theoretically
and numerically that, under these conditions, the new estimator called the
Compensated MU selector achieves better accuracy of estimation than the
original MU selector.

1. Introduction

We consider the model

y = Xθ∗ + ξ,(1)
Z = X + Ξ,(2)

where the random vector y ∈ Rn and the random n × p matrix Z are observed,
the n × p matrix X is unknown, Ξ is an n × p random noise matrix, ξ ∈ Rn is a
random noise vector, θ∗ = (θ∗1 , . . . , θ∗p) ∈ Θ is a vector of unknown parameters to
be estimated, and Θ is a given subset of Rp. We consider the problem of estimating
an s-sparse vector θ∗ (i.e., a vector θ∗ having only s non zero components), with
p possibly much larger than n. If the matrix X in (1)–(2) is observed without
error (Ξ = 0), this problem has been recently studied in numerous papers. The
proposed estimators mainly rely on `1 minimization techniques. In particular, this
is the case for the widely used Lasso and Dantzig selector, see among others Candès
and Tao (2007), Bunea et al. (2007a,b), Bickel et al. (2009), Koltchinskii (2009), the
book by Bühlmann and van de Geer (2011), the lecture notes by Koltchinskii (2011),
Belloni and Chernozhukov (2011) and the references cited therein.
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2 M.Rosenbaum and A.B.Tsybakov

However, it is shown in Rosenbaum and Tsybakov (2010) that dealing with a
noisy observation of the regression matrix X has severe consequences. In particular,
the Lasso and Dantzig selector become very unstable in this context. An alternative
procedure, called the matrix uncertainty selector (MU selector for short) is proposed
in Rosenbaum and Tsybakov (2010) in order to account for the presence of noise
Ξ. The MU selector θ̂MU is defined as a solution of the minimization problem

(3) min{|θ|1 : θ ∈ Θ,
∣∣∣ 1
n

ZT (y − Zθ)
∣∣∣
∞
≤ µ|θ|1 + τ},

where | · |p denotes the `p-norm, 1 ≤ p ≤ ∞, Θ is a given subset of Rp characterizing
the prior knowledge about θ∗, and the constants µ and τ depend the level of the
noises Ξ and ξ respectively. If the noise terms ξ and Ξ are deterministic, it is
suggested in Rosenbaum and Tsybakov (2010) to choose τ such that

∣∣∣ 1
n

ZT ξ
∣∣∣
∞
≤ τ,

and to take µ = δ(1 + δ) with δ such that

|Ξ|∞ ≤ δ,

where, for a matrix A, we denote by |A|∞ its componentwise `∞-norm.
In this paper, we propose a modification of the MU selector for the model where

Ξ is a random matrix with independent and zero mean entries Ξij such that the
sums of expectations

σ2
j , 1

n

n∑

i=1

IE(Ξ2
ij), 1 ≤ j ≤ p,

are finite and admit data-driven estimators. Our main example where such estima-
tors exist is the model with data missing at random (see below). The idea underlying
the new estimator is the following. In the ideal setting where there is no noise Ξ,
the estimation strategy for θ∗ is based on the matrix X. When there is noise this
is impossible since X is not observed and so we have no other choice than using Z
instead of X. However, it is not hard to see that under the above assumptions on Ξ,
the matrix ZT Z/n appearing in (3) contains a bias induced by the diagonal entries
of the matrix ΞT Ξ/n whose expectations σ2

j do not vanish. If σ2
j can be estimated

from the data, it is natural to make a bias correction. This leads to a new estimator
θ̂ defined as a solution of the minimization problem

(4) min{|θ|1 : θ ∈ Θ,
∣∣∣ 1
n

ZT (y − Zθ) + D̂θ
∣∣∣
∞
≤ µ|θ|1 + τ},

where D̂ is the diagonal matrix with entries σ̂2
j , which are estimators of σ2

j , and
µ ≥ 0 and τ ≥ 0 are constants that will be specified later. This estimator θ̂ will be
called the Compensated MU selector. In this paper, we show both theoretically and
numerically that the estimator θ̂ achieves better performance than the original MU
selector θ̂MU . In particular, under natural conditions given below, the bounds on
the error of the Compensated MU selector decrease as O(n−1/2) up to logarithmic
factors as n → ∞, whereas for the original MU selector θ̂MU the corresponding
bounds do not decrease with n and can be only small if the noise Ξ is small.
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Matrix Uncertainty Selector 3

Remark 1. The problem (4) is equivalent to

(5) min
(θ,u)∈W (µ,τ)

|θ|1,

where

(6) W (µ, τ) =
{

(θ, u) ∈ Θ×Rp :
∣∣∣∣
1
n

ZT (y − Zθ) + D̂θ + u

∣∣∣∣
∞
≤ τ, |u|∞ ≤ µ|θ|1

}
,

with the same µ and τ as in (4) (see the proof in Section 7). This simplifies in some
cases the computation of the solution.

An important example where the values σ2
j can be estimated is given by the

model with missing data. Assume that the elements Xij of the matrix X are unob-
servable, and we can only observe

(7) Z̃ij = Xijηij , i = 1, . . . , n, j = 1, . . . , p,

where for each fixed j = 1, . . . , p, the factors ηij , i = 1, . . . , n, are i.i.d. Bernoulli
random variables taking value 1 with probability 1− πj and 0 with probability πj ,
0 < πj < 1. The data Xij is missing if ηij = 0, which happens with probability πj .
We can rewrite (7) in the form

(8) Zij = Xij + Ξij ,

where Zij = Z̃ij/(1− πj), Ξij = Xij(ηij − (1− πj))/(1− πj). Thus, we can reduce
the model with missing data (7) to the form (2) with a matrix Ξ whose elements
Ξij have zero mean and variance X2

ijπj/(1− πj). So,

(9) σ2
j =

1
n

n∑

i=1

X2
ij

πj

1− πj
.

In Section 4 below, we show that when the πj are known, the σ2
j admit good data-

driven estimators σ̂2
j . If the πj are unknown, they can be readily estimated by the

empirical frequencies of 0 that we further denote by π̂j . Then the Zij = Z̃ij/(1−πj)
appearing in (8) are not available and should be replaced by Zij = Z̃ij/(1 − π̂j).
This slightly changes the model and implies a minor modification of the estimator
(cf. Section 4).

2. Definitions and notation

Consider the following random matrices

M (1) =
1
n

XT Ξ, M (2) =
1
n

XT ξ, M (3) =
1
n

ΞT ξ,

M (4) =
1
n

(ΞT Ξ−Diag{ΞT Ξ}), M (5) =
1
n

Diag{ΞT Ξ} −D,

where D is the diagonal matrix with diagonal elements σ2
j , j = 1, . . . , p, and for a

square matrix A, we denote by Diag{A} the matrix with the same dimensions as
A, the same diagonal elements as A and all off-diagonal elements equal to zero.

Under conditions that will be specified below, the entries of the matrices M (k)

are small with probability close to 1. Bounds on the `∞-norms of the matrices M (k)
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4 M.Rosenbaum and A.B.Tsybakov

characterize the stochastic error of the estimation. The accuracy of the estimators
is determined by these bounds and by the properties of the Gram matrix

Ψ , 1
n

XT X.

For a vector θ, we denote by θJ the vector in Rp that has the same coordinates as
θ on the set of indices J ⊂ {1, . . . , p} and zero coordinates on its complement Jc.
We denote by |J | the cardinality of J .

To state our results in a general form, we follow Gautier and Tsybakov (2011)
and introduce the sensitivity characteristics related to the action of the matrix Ψ
on the cone

CJ , {∆ ∈ Rp : |∆Jc |1 ≤ |∆J |1} ,

where J is a subset of {1, . . . , p}. For q ∈ [1,∞] and an integer s ∈ [1, p], we define
the `q sensitivity as follows:

κq(s) , min
J: |J|≤s

(
min

∆∈CJ : |∆|q=1
|Ψ∆|∞

)
.

We will also consider the coordinate-wise sensitivities

κ∗k(s) , min
J: |J|≤s

(
min

∆∈CJ : ∆k=1
|Ψ∆|∞

)
,

where ∆k is the kth coordinate of ∆, k = 1, . . . , p. To get meaningful bounds for
various types of estimation errors, we will need the positivity of κq(s) or κ∗k(s). As
shown in Gautier and Tsybakov (2011), this requirement is weaker than the usual
assumptions related to the structure of the Gram matrix Ψ, such as the Restricted
Eigenvalue assumption and the Coherence assumption. For completeness, we recall
these two assumptions.

Assumption RE(s). Let 1 ≤ s ≤ p. There exists a constant κRE(s) > 0 such
that

min
∆∈CJ\{0}

|∆T Ψ∆|
|∆J |22

≥ κRE(s)

for all subsets J of {1, . . . , p} of cardinality |J | ≤ s.

Assumption C. All the diagonal elements of Ψ are equal to 1 and all its off-
diagonal elements of Ψij satisfy the coherence condition: maxi 6=j |Ψij | ≤ ρ for some
ρ < 1.

Note that Assumption C with ρ < (3s)−1 implies Assumption RE(s) with
κRE(s) =

√
1− 3ρs, see Bickel et al. (2009) or Lemma 2 in Lounici (2008). From

Proposition 4.2 of Gautier and Tsybakov (2011) we get that, under Assumption C
with ρ < (2s)−1,

(10) κ∞(s) ≥ 1− 2ρs,

which yields the control of the sensitivities κq(s) for all 1 ≤ q ≤ ∞ since

(11) κq(s) ≥ (2s)−1/qκ∞(s), ∀ 1 ≤ q ≤ ∞,

by Proposition 4.1 of Gautier and Tsybakov (2011). Furthermore, Proposition 9.2
of Gautier and Tsybakov (2011) implies that, under Assumption RE(s),

(12) κ1(s) ≥ (4s)−1κRE(s),
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Matrix Uncertainty Selector 5

and by Proposition 9.3 of that paper, under Assumption RE(2s) for any s ≤ p/2
and any 1 < q ≤ 2, we have

(13) κq(s) ≥ C(q)s−1/qκRE(2s),

where C(q) = 2−1/q−1/2
(
1 + (q − 1)−1/q )−1.

3. Main results

In this section, we give bounds on the estimation and prediction errors of the
Compensated MU selector. For ε ≥ 0, we consider the thresholds b(ε) ≥ 0 and
δi(ε) ≥ 0, i = 1, . . . , 5, such that

(14) P
(

max
j=1,...,p

|σ̂2
j − σ2

j | ≥ b(ε)
) ≤ ε,

and

(15) P(|M (i)|∞ ≥ δi(ε)) ≤ ε, i = 1, . . . , 5.

Define
µ(ε) = δ1(ε) + δ4(ε) + δ5(ε) + b(ε), τ(ε) = δ2(ε) + δ3(ε),

and A(ε) = A(µ(ε), τ(ε)), where

(16) A(µ, τ) ,
{

θ ∈ Θ :
∣∣∣ 1
n

ZT (y − Zθ) + D̂θ
∣∣∣
∞
≤ µ|θ|1 + τ

}
, ∀ µ, τ ≥ 0,

and Θ is a given subset of Rp. For ε ≥ 0, the Compensated MU selector is defined
as a solution of the minimization problem

(17) min{|θ|1 : θ ∈ A(ε)},
We have the following result.

Theorem 1. Assume that model (1)–(2) is valid with an s-sparse vector of param-
eters θ∗ ∈ Θ, where Θ is a given subset of Rp. For ε ≥ 0, set

ν(ε) = 2
(
µ(ε) + δ1(ε)

)|θ∗|1 + 2τ(ε).

Then, with probability at least 1−6ε, the set A(ε) is not empty and for any solution
θ̂ of (17) we have

|θ̂ − θ∗|q ≤ ν(ε)
κq(s)

, ∀ 1 ≤ q ≤ ∞,(18)

|θ̂k − θ∗k| ≤
ν(ε)
κ∗k(s)

, ∀ 1 ≤ k ≤ p,(19)

1
n
|X(θ̂ − θ∗)|22 ≤ min

{ν2(ε)
κ1(s)

, 2ν(ε)|θ∗|1
}

.(20)

The proof of this theorem is given in Section 7.

Note that (20) contains a bound on the prediction error under no assumption
on X:

1
n
|X(θ̂ − θ∗)|22 ≤ 2ν(ε)|θ∗|1 .

The other bounds in Theorem 1 depend on the sensitivities. Using (10) – (13) we
obtain the following corollary of Theorem 1.
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6 M.Rosenbaum and A.B.Tsybakov

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Then, with probability
at least 1− 6ε, for any solution θ̂ of (17) we have the following inequalities.

(i) Under Assumption RE(s):

|θ̂ − θ∗|1 ≤ 4ν(ε)s
κRE(s)

,(21)

1
n
|X(θ̂ − θ∗)|22 ≤ 4ν2(ε)s

κRE(s)
.(22)

(ii) Under Assumption RE(2s), s ≤ p/2:

|θ̂ − θ∗|q ≤ 4ν(ε)s1/q

κRE(2s)
, ∀ 1 < q ≤ 2.(23)

(iii) Under Assumption C with ρ < 1
2s :

|θ̂ − θ∗|q <
(2s)1/qν(ε)

1− 2ρs
, ∀ 1 ≤ q ≤ ∞,(24)

where we set 1/∞ = 0.

If the components of ξ and Ξ are subgaussian, the values δi(ε) are of order
O(n−1/2) up to logarithmic factors, and the values b(ε) and are of the same order in
the model with missing data (see Section 4). Then, the bounds for the Compensated
MU selector in Theorem 2 are decreasing with rate n−1/2 as n → ∞. This is an
advantage of the Compensated MU selector as compared to the original MU selector
θ̂MU , for which the corresponding bounds do not decrease with n and can be small
only if the noise Ξ is small (cf. Rosenbaum and Tsybakov (2010)).

If the matrix X is observed without error (Ξ = 0), then µ(ε) = 0, δi(ε) = 0, i 6= 2,
and the Compensated MU selector coincides with the Dantzig selector. In this
particular case, the results (ii) and (iii) of Theorem 2 improve, in terms of the
constants or the range of validity, upon the corresponding bounds in Bickel et
al. (2009) and Lounici (2008).

4. Control of the stochastic error terms

Theorems 1 and 2 are stated with general thresholds δi(ε) and b(ε), and can be
used both for random or deterministic noises ξ,Ξ (in the latter case, ε = 0) and
random or deterministic X. In this section, considering ε > 0 we first derive the
values δi(ε) for random ξ and Ξ with subgaussian entries, and then we specify b(ε)
and the matrix D̂ for the model with missing data. Note that, for random ξ and Ξ,
the values δi(ε) and b(ε) characterize the stochastic error of the estimator.

4.1. Thresholds δi(ε) under subgaussian noise

Recall that a zero-mean random variable W is said to be γ-subgaussian (γ > 0) if,
for all t ∈ R,

(25) IE[exp(tW )] ≤ exp(γ2t2/2).
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Matrix Uncertainty Selector 7

In particular, if W is a zero-mean gaussian or bounded random variable, it is sub-
gaussian. A zero-mean random variable W will be called (γ, t0)-subexponential if
there exist γ > 0 and t0 > 0 such that

(26) IE[exp(tW )] ≤ exp(γ2t2/2), ∀ |t| ≤ t0.

Let the noise terms ξ and Ξ satisfy the following assumption.

Assumption N. Let γΞ > 0, γξ > 0. The entries Ξij, i = 1, . . . , n, j = 1, . . . , p,
of the matrix Ξ are zero-mean γΞ-subgaussian random variables, the n rows of Ξ
are independent, and IE(ΞijΞik) = 0 for j 6= k, i = 1, . . . , n. The components ξi of
the vector ξ are independent zero-mean γξ-subgaussian random variables satisfying
IE(Ξijξi) = 0, i = 1, . . . , n, j = 1, . . . , p.

Assumption N implies that the random variables Ξijξi, ΞijΞik are subexponen-
tial. Indeed, if two random variables ζ and η are subgaussian, then for some c > 0
we have IE exp(cζη) < ∞, which implies that (26) holds for W = ζη with some γ, t0
whenever IE(ζη) = 0, cf., e.g., Petrov (1995), page 56.

Next, ζj , (1/n)
∑n

i=1 Ξ2
ij − σ2

j is a zero-mean subexponential random variable
with variance O(1/n). It is easy to check that (26) holds for W = ζj with γ =
O(1/

√
n) and t0 = O(n).

To simplify the notation, we will use a rougher evaluation valid under Assumption
N, namely that all Ξijξi, ΞijΞik are (γ0, t0)-subexponential with the same γ0 > 0
and t0 > 0, and all ζj are (γ0/

√
n, t0n)-subexponential. Here the constants γ0 and

t0 depend only on γΞ and γξ. For 0 < ε < 1 and an integer N , set

δ̄(ε,N) = max

(
γ0

√
2 log(N/ε)

n
,

2 log(N/ε)
t0n

)
.

Lemma 1. Let Assumption N be satisfied, and let X be a deterministic matrix with
max1≤j≤p

1
n

∑n
i=1 X2

ij , m2. Then for any 0 < ε < 1 the bound (15) holds with

δ1(ε) = γΞ

√
2m2 log(2p2/ε)

n
, δ2(ε) = γξ

√
2m2 log(2p/ε)

n
,(27)

δ3(ε) = δ5(ε) = δ̄(ε, 2p), δ4(ε) = δ̄(ε, p(p− 1)).(28)

Proof. Use the union bound and the facts that P(W > δ) ≤ exp(−δ2/(2γ2)) for a γ-
subgaussian W , and P( 1

n

∑n
i=1 Wi > δ) ≤ max

(
exp(−nδ2/(2γ2)), exp(−δt0n/2)

)
for a sum of independent (γ, t0)-subexponential Wi. 2

4.2. Data-driven D̂ and b(ε) for the model with missing data

Consider now the model with missing data (7) and assume that X is non-random.
Then we have Z̃2

ij = X2
ijηij , which implies:

IE[Z̃2
ij ] = X2

ij(1− πj) , j = 1, . . . , p.

Hence, Z̃2
ijπj/(1−πj)2 is an unbiased estimator of X2

ijπj/(1−πj). Then σ2
j defined

in (9) is naturally estimated by

(29) σ̂2
j =

1
n

n∑

i=1

Z̃2
ij

πj

(1− πj)2
,
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8 M.Rosenbaum and A.B.Tsybakov

The matrix D̂ is then defined as a diagonal matrix with diagonal entries σ̂2
j . It is

not hard to prove that σ̂2
j approximates σ2

j in probability with rate O(n−1/2) up to
a logarithmic factor. For example, let the probability that the data is missing be
the same for all j: π1 = · · · = πp , π∗. Then

P(|σ̂2
j − σ2

j | ≥ b) = P

(∣∣∣∣∣
1
n

n∑

i=1

(
Z̃2

ij

π∗
(1− π∗)2

−X2
ij

π∗
(1− π∗)

)∣∣∣∣∣ ≥ b

)

= P

(∣∣∣∣∣
1
n

n∑

i=1

Z2
ij −

X2
ij

(1− π∗)

∣∣∣∣∣ ≥
b

π∗

)
≤ 2 exp

(
−2nb2(1− π∗)4

π2∗m4

)
,

where we have used the fact that 0 ≤ Z2
ij ≤ X2

ij(1 − π∗)−2, Hoeffding’s inequality
and the notation m4 , max1≤j≤p

1
n

∑n
i=1 X4

ij . This proves (14) with

b(ε) =
π∗

(1− π∗)2

√
m4 log(2p/ε)

2n
.

If π∗ is unknown, we replace it by the estimator π̂ = 1
np

∑
i,j 1{Z̃ij=0}, where 1{·} de-

notes the indicator function. Another difference is that Zij = Z̃ij/(1−πj) appearing
in (8) are not available when πj ’s are unknown. Therefore, we slightly modify the
estimator using Z̃ij instead of Zij ; we define θ̂ as a solution of min{|θ|1 : θ ∈ Ã(ε)}
with

(30) Ã(ε) =
{

θ ∈ Θ :
∣∣∣ 1
n

Z̃T (y(1− π̂)− Z̃θ) + D̂θ
∣∣∣
∞
≤ µ̃(ε)|θ|1 + τ̃(ε)

}
,

where µ̃(ε) and τ̃(ε) are suitably chosen constants, Z̃ is the n × p matrix with
entries Z̃ij , and D̂ is a diagonal matrix with entries σ̂2

j = 1
n

∑n
i=1 Z̃2

ij π̂/(1 − π̂)2.
This modification introduces in the bounds an additional term proportional to
π̂ − π∗, which is of the order O((np)−1/2) in probability and hence is negligible as
compared to the error bound for the Compensated MU selector.

Remark 2. In this section, we have considered non-random X. Using the same
argument, it is easy to derive analogous expressions for σi(ε) and b(ε) when X is
a random matrix with independent sub-gaussian entries, and ξ, Ξ are independent
from X.

5. Confidence intervals

The bounds of Theorems 1 and 2 depend on the unknown matrix X via the sen-
sitivities, and therefore cannot be used to provide confidence intervals. In this sec-
tion, we show how to address the issue of confidence intervals by deriving other
type of bounds based on the empirical sensitivities. Note first that the matrix
Ψ̂ = 1

nZT Z − D̂ is a natural estimator of the unknown Gram matrix Ψ. It is
√

n-
consistent in `∞-norm under the conditions of the previous section. Therefore, it
makes sense to define the empirical counterparts of κq(s) and κ∗k(s) by the relations:

κ̂q(s) , min
J: |J|≤s

(
min

∆∈CJ : |∆|q=1
|Ψ̂∆|∞

)
,

and

κ̂∗k(s) , min
J: |J|≤s

(
min

∆∈CJ : ∆k=1
|Ψ̂∆|∞

)
.
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The values κ̂q(s) and κ̂∗k(s) that we will call the empirical sensitivities can be
efficiently computed for small s or, alternatively, one can compute data-driven
lower bounds on them for any s using linear programming, cf. Gautier and Tsy-
bakov (2011).

The following theorem establishes confidence intervals for s-sparse vector θ∗

based on the empirical sensitivities.

Theorem 3. Assume that model (1)–(2) is valid with an s-sparse vector of param-
eters θ∗ ∈ Θ, where Θ is a given subset of Rp. Then, with probability at least 1−6ε,
for any solution θ̂ of (17) we have

|θ̂ − θ∗|q ≤ 2(µ(ε)|θ̂|1 + τ(ε))
κ̂q(s)(1− µ(ε)/κ̂1(s))+

, ∀ 1 ≤ q ≤ ∞,(31)

|θ̂k − θ∗k| ≤
2(µ(ε)|θ̂|1 + τ(ε))

κ̂∗k(s)(1− µ(ε)/κ̂1(s))+
, ∀ 1 ≤ k ≤ p,(32)

where x+ = max(0, x), and we set 1/0 , ∞.

Proof. Set ∆ = θ∗ − θ̂, and write for brevity S(θ) = 1
nZT (y − Zθ) + D̂θ. Using

Lemma 2 in Section 7, the fact that |∆Jc |1 ≤ |∆J |1 where J is the set of non-
zero components of θ∗ (cf. Lemma 1 in Rosenbaum and Tsybakov (2010)) and the
definition of the empirical sensitivity κ̂1(s), we find

|Ψ̂∆|∞ ≤ |S(θ∗)|∞ + |S(θ̂)|∞
≤ µ(ε)(|θ∗|1 + |θ̂|1) + 2τ(ε)

≤ 2(µ(ε)|θ̂|1 + τ(ε)) + µ(ε)|∆|1
≤ 2(µ(ε)|θ̂|1 + τ(ε)) +

µ(ε)
κ̂1(s)

|Ψ̂∆|∞

This and the definition of κ̂q(s) yield (31). The proof of (32) is analogous, with
κ̂∗k(s) used instead of κ̂q(s). 2

6. Simulations

We consider here the model with missing data (7). Simulations in Rosenbaum and
Tsybakov (2010) indicate that in this model the MU selector achieves better numer-
ical performance than the Lasso or the Dantzig selector. Here we compare the MU
selector with the Compensated MU selector. We design the numerical experiment
the following way.
− We take a matrix X of size 100 × 500 (n = 100, p = 500) which is the normal-
ized version (centered and then normalized so that all the diagonal elements of the
associated Gram matrix XT X/n are equal to 1) of a 100 × 500 matrix with i.i.d.
standard Gaussian entries.
− For a given integer s, we randomly (uniformly) choose s non-zero elements in
a vector θ∗ of size 500. The associated coefficients θ∗j are set to 0.5, and all other
coefficients are set to 0. We take s = 1, 2, 3, 5, 10.
− We set y = Xθ∗ + ξ, where ξ a vector with i.i.d. zero mean and variance ν2

normal components, ν = 0.05/1.96.
− We compute the values Zij = Z̃ij/(1−π∗) with Z̃ij as in (7) 1, and πj = 0.1 , π∗

1Remark that this experiment slightly differs from those in Rosenbaum and Tsybakov (2010)
where the matrix taken in (3) has entries Z̃ij .
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10 M.Rosenbaum and A.B.Tsybakov

for all j. (The value π∗ rather than its empirical counterpart, which is very close to
π∗, is used in the algorithm to simplify the computations).
− We run a linear programming algorithm to compute the solutions of (3) and (17)
where we optimize over Θ = R500

+ . To simplify the comparison with Rosenbaum and
Tsybakov (2010), we write µ in the form (1 + δ)δ with δ = 0, 0.01, 0.05, 0.075, 0.1.
In particular, δ = 0 corresponds to the Dantzig selector based on the noisy ma-
trix Z. In practice, one can use an empirical procedure of the choice of δ described
in Rosenbaum and Tsybakov (2010). The choice of τ is not crucial and influences
only slightly the output of the algorithm. The results presented below correspond
to τ chosen in the same way as in the numerical study in Rosenbaum and Tsy-
bakov (2010).
− We compute the error measures

Err1 = |θ̂ − θ∗|22 and Err2 = |X(θ̂ − θ∗)|22.

We also record the retrieved sparsity pattern, which is defined as the set of the
non-zero coefficients of θ̂.
− For each value of s we run 100 Monte Carlo simulations.

Tables 1–5 present the empirical averages and standard deviations (in brackets)
of Err1, Err2, of the number of non-zero coefficients in θ̂ (Nb1) and of the number
of non-zero coefficients in θ̂ belonging to the true sparsity pattern (Nb2). We also
present the total number of simulations where the sparsity pattern is exactly re-
trieved (Exact). The lines with “δ = v” for v = 0, 0.01, 0.05, 0.075, 0.1 correspond
to the MU selector and those with “C − δ = v” to the Compensated MU selector.

Err1 Err2 Nb1 Nb2 Exact

δ = 0 0.0196
(0.0114)

1.334
(0.5865)

70.13
(10.91)

1
(0)

0

C-δ = 0 0.0225
(0.0145)

1.495
(0.6993)

80.09
(8.343)

1
(0)

0

δ = 0.01 0.0131
(0.0069)

0.9318
(0.3606)

45.45
(9.507)

1
(0)

1

C-δ = 0.01 0.0095
(0.0062)

0.8386
(0.4625)

46.88
(9.737)

1
(0)

0

δ = 0.05 0.0100
(0.0038)

0.8001
(0.2121)

12.45
(5.798)

1
(0)

3

C-δ = 0.05 0.0042
(0.0027)

0.3412
(0.1844)

10.52
(5.764)

1
(0)

6

δ = 0.075 0.0100
(0.0030)

0.8878
(0.1869)

6.28
(4.261)

1
(0)

14

C-δ = 0.075 0.0038
(0.0020)

0.3377
(0.1348)

4.91
(3.674)

1
(0)

21

δ = 0.1 0.0110
(0.0024)

1.038
(0.1582)

3.22
(2.640)

1
(0)

36

C-δ = 0.1 0.0044
(0.0015)

0.4255
(0.1040)

2.37
(2.042)

1
(0)

54

Tab. 1. Results for the model with missing data, s = 1.
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Err1 Err2 Nb1 Nb2 Exact

δ = 0 0.0437
(0.0170)

2.756
(1.060)

80.04
(5.149)

2
(0)

0

C-δ = 0 0.0685
(0.0275)

2.951
(1.129)

92.67
(3.911)

2
(0)

0

δ = 0.01 0.0287
(0.0107)

1.838
(0.5423)

49.29
(6.717)

2
(0)

0

C-δ = 0.01 0.0201
(0.0098)

1.561
(0.6827)

48.18
(6.775)

2
(0)

0

δ = 0.05 0.0264
(0.0093)

2.105
(0.4960)

10.35
(4.631)

2
(0)

1

C-δ = 0.05 0.0125
(0.0066)

0.9796
(0.3849)

7.70
(4.092)

2
(0)

8

δ = 0.075 0.0301
(0.0090)

2.694
(0.5022)

4.77
(2.587)

2
(0)

24

C-δ = 0.075 0.0148
(0.0052)

1.359
(0.3573)

3.41
(1.924)

2
(0)

47

δ = 0.1 0.0371
(0.0086)

3.521
(0.4730)

2.62
(1.046)

2
(0)

65

C-δ = 0.1 0.0218
(0.0059)

2.088
(0.3853)

2.28
(0.617)

2
(0)

77

Tab. 2. Results for the model with missing data, s = 2.

Err1 Err2 Nb1 Nb2 Exact

δ = 0 0.0772
(0.0296)

4.361
(1.268)

83.95
(4.177)

3
(0)

0

C-δ = 0 0.1480
(0.0436)

4.258
(1.253)

97.76
(3.262)

3
(0)

0

δ = 0.01 0.0493
(0.0176)

2.929
(0.7907)

49.78
(6.515)

3
(0)

0

C-δ = 0.01 0.0351
(0.0153)

2.328
(0.8442)

48.23
(6.302)

3
(0)

0

δ = 0.05 0.0528
(0.0166)

4.295
(0.7696)

9.82
(3.907)

3
(0)

1

C-δ = 0.05 0.0281
(0.0109)

2.343
(0.6360)

7.02
(3.608)

3
(0)

18

δ = 0.075 0.0643
(0.0161)

5.842
(0.7865)

5.16
(2.086)

3
(0)

29

C-δ = 0.075 0.0384
(0.0106)

3.606
(0.6556)

3.82
(1.177)

3
(0)

57

δ = 0.1 0.0814
(0.0164)

7.792
(0.7434)

3.57
(0.9618)

3
(0)

64

C-δ = 0.1 0.0575
(0.0121)

5.538
(0.6554)

3.13
(0.3912)

3
(0)

89

Tab. 3. Results for the model with missing data, s = 3.

Err1 Err2 Nb1 Nb2 Exact

δ = 0 0.1470
(0.0536)

6.801
(1.686)

87.35
(3.683)

5
(0)

0

C-δ = 0 0.3631
(0.0802)

6.114
(1.490)

104.23
(4.039)

5
(0)

0

δ = 0.01 0.0961
(0.0340)

4.928
(1.180)

49.64
(5.527)

5
(0)

0

C-δ = 0.01 0.0670
(0.0281)

3.627
(1.206)

46.69
(6.298)

5
(0)

0

δ = 0.05 0.1375
(0.0391)

11.100
(1.557)

10.34
(3.347)

5
(0)

6

C-δ = 0.05 0.0864
(0.0307)

7.302
(1.475)

7.42
(2.404)

5
(0)

27

δ = 0.075 0.1769
(0.0427)

15.68
(1.548)

6.85
(1.867)

5
(0)

31

C-δ = 0.075 0.1311
(0.0427)

11.86
(1.737)

5.55
(1.013)

5
(0)

68

δ = 0.1 0.2286
(0.0455)

21.19
(1.385)

5.67
(1.049)

5
(0)

58

C-δ = 0.1 0.1933
(0.0595)

17.71
(2.056)

5.19
(0.6114)

5
(0)

88

Tab. 4. Results for the model with missing data, s = 5.
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Err1 Err2 Nb1 Nb2 Exact

δ = 0 0.4479
(0.1407)

14.56
(3.060)

92.21
(2.881)

10
(0)

0

C-δ = 0 1.208
(0.1705)

11.90
(2.197)

117.23
(6.532)

10
(0)

0

δ = 0.01 0.3512
(0.1263)

13.59
(1.997)

52.76
(5.340)

10
(0)

0

C-δ = 0.01 0.2921
(0.1317)

10.70
(2.049)

48.74
(6.067)

10
(0)

0

δ = 0.05 0.7660
(0.2395)

47.13
(4.389)

20.29
(4.152)

9.96
(0.1959)

0

C-δ = 0.05 0.6919
(0.2696)

41.55
(5.709)

16.99
(4.241)

9.94
(0.2374)

1

δ = 0.075 0.9683
(0.2721)

65.24
(5.496)

16.78
(3.545)

9.85
(0.4092)

0

C-δ = 0.075 0.9443
(0.3067)

61.23
(7.066)

15.00
(3.452)

9.76
(0.5499)

5

δ = 0.1 1.150
(0.2807)

82.86
(6.745)

14.84
(2.948)

9.58
(0.6508)

1

C-δ = 0.1 1.157
(0.3049)

80.43
(8.359)

13.57
(2.804)

9.39
(0.7601)

11

Tab. 5. Results for the model with missing data, s = 10.

The results of the simulations are quite convincing. Indeed, the Compensated MU
selector improves upon the MU selector with respect to all the considered criteria,
in particular when θ∗ is very sparse (s = 1, 2, 3). The order of magnitude of the
improvement is such that, for the best δ, the errors Err1 and Err2 are divided by 2.
The improvement is not so significant for larger s, especially for s = 10 when the
model starts to be not very sparse. For all the values of s, the non-zero coefficients
of θ∗ are systematically in the sparsity pattern both of the MU selector and of
the Compensated MU selector. The total number of non-zero coefficients is always
smaller (i.e., closer to the correct one) for the Compensated MU selector. Finally,
note that the best results for the error measures Err1 and Err2 are obtained with
δ ≤ 0.075, while the sparsity pattern is better retrieved for δ = 0.1. This reflects a
trade-off between estimation and selection.

7. Proofs

Proof of Remark 1. It is enough to show that A(µ, τ) = B(µ, τ) where

B(µ, τ) = {θ ∈ Θ : ∃ u ∈ Rp such that (θ, u) ∈ W (µ, τ)}.

Let first (θ, u) ∈ W (µ, τ). Using the triangle inequality, we easily get that θ ∈
A(µ, τ). Now take θ ∈ A(µ, τ). We set

N =
1
n

ZT (y − Zθ) + D̂θ

and consider u ∈ Rp defined by

ui = −Ni1{|Ni|≤µ|θ|1} − sign(Ni)µ|θ|11{|Ni|>µ|θ|1},

for i = 1, . . . , p, where ui and Ni are the ith components of u and N respectively.
It is easy to check that (θ, u) ∈ W

(
µ, τ

)
, which concludes the proof.

Proof of Theorem 1. The proof is based on two lemmas. For brevity, we will skip
the dependence of b(ε), δi(ε) and ν(ε) on ε.

Lemma 2. With probability at least 1− 6ε, we have θ∗ ∈ A(ε).
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Proof. We first write that ZT (y − Zθ∗) + nD̂θ∗ is equal to

−XT Ξθ∗ + XT ξ + ΞT ξ − (ΞT Ξ−Diag{ΞT Ξ})θ∗

− (Diag{ΞT Ξ} − nD)θ∗ + n(D̂ −D)θ∗.

By definition of the δi(ε) and b(ε), with probability at least 1− 6ε we have

| 1
n

XT Ξθ∗|∞ ≤ | 1
n

XT Ξ|∞|θ∗|1 ≤ δ1|θ∗|1(33)

| 1
n

XT ξ|∞ + | 1
n

ΞT ξ|∞ ≤ δ2 + δ3(34)

| 1
n

(ΞT Ξ−Diag{ΞT Ξ})θ∗|∞ ≤ | 1
n

(ΞT Ξ−Diag{ΞT Ξ})|∞|θ∗|1 ≤ δ4|θ∗|1(35)

|( 1
n

Diag{ΞT Ξ} −D)θ∗|∞ ≤ | 1
n

Diag{ΞT Ξ} −D|∞|θ∗|1 ≤ δ5|θ∗|1(36)

|(D̂ −D)θ∗|∞ ≤ b|θ∗|1.(37)

Therefore θ∗ ∈ A(ε) with probability at least 1− 6ε. 2

Lemma 3. With probability at least 1− 6ε, for ∆ = θ̂ − θ∗ we have

| 1
n

XT X∆|∞ ≤ ν.

Proof. Throughout the proof, we assume that we are on event of probability at
least 1− 6ε where inequalities (33) – (37) hold and θ∗ ∈ A(ε). We have

| 1
n

XT X∆|∞ ≤ | 1
n

ZT (Zθ̂ − Ξθ̂ − y + ξ)|∞ + | 1
n

ΞT X∆|∞.

Consequently,

| 1
n

XT X∆|∞ ≤ | 1
n

ZT (Zθ̂ − y)− D̂θ̂|∞

+ |( 1
n

ZT Ξ−D)θ̂|∞ + |(D̂ −D)θ̂|∞ + | 1
n

ZT ξ|∞ + | 1
n

ΞT X∆|∞.

Using that θ̂ ∈ A(ε), we easily get that | 1nXT X∆|∞ is not greater than

µ|θ̂|1 + 2δ2 + 2δ3 + b|θ̂|1 + |( 1
n

ZT Ξ−D)θ̂|∞ + | 1
n

ΞT X∆|∞.

Now remark that

|( 1
n

ZT Ξ−D)θ̂|∞ ≤ | 1
n

ZT Ξ−D|∞|θ̂|1

≤ (| 1
n

(ΞT Ξ−Diag{ΞT Ξ})|∞ + | 1
n

Diag{ΞT Ξ} −D|∞ + | 1
n

XT Ξ|∞
)|θ̂|1

≤ (δ1 + δ4 + δ5)|θ̂|1.
Finally, using that

| 1
n

ΞT X∆|∞ ≤ |θ̂ − θ∗|1| 1
n

XT Ξ|∞ ≤ δ1(|θ̂|1 + |θ∗|1)

together with the fact that |θ̂|1 ≤ |θ∗|1, we obtain the result. 2
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We now proceed to the proof of Theorem 1. The bounds (18) and (19) follow from
Lemma 3, the fact that |∆Jc |1 ≤ |∆J |1 where J is the set of non-zero components
of θ∗ (cf. Lemma 1 in Rosenbaum and Tsybakov (2010)) and the definition of the
sensitivities κq(s), κ∗k(s). To prove (20), first note that

(38)
1
n
|X∆|22 ≤

1
n
|XT X∆|∞|∆|1,

and use (18) with q = 1 and Lemma 3. This yields the first term under the mini-
mum on the right hand side of (20). The second term is obtained again from (38),
Lemma 3 and the inequality |∆|1 ≤ |θ̂|1 + |θ∗|1 ≤ 2|θ∗|1.
Proof of Theorem 2. The bounds (21) and (24) follow by combining (18) with
(12) and with (10) – (11) respectively. Next, (22) follows from (20) and (12). Also,
as an easy consequence of (18) and (13) with q = 2 we get

|θ̂ − θ∗|2 ≤ 4ν(ε)s1/2

κRE(2s)
.

Finally, (23) follows from this inequality and (21) using the interpolation formula
|∆|qq ≤ |∆|2−q

1 |∆|2(q−1)
2 for ∆ = θ̂ − θ∗, and the fact that κRE(s) ≥ κRE(2s).
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[5] Bühlmann, P., and S. A. van de Geer (2011). Statistics for High-Dimensional
Data. Springer, New-York.

[6] Candès, E.J. and Tao, T. (2007). The Dantzig selector: statistical estimation
when p is much larger than n (with discussion). The Annals of Statistics 35
2313-2404.

[7] Gautier, E. and Tsybakov, A.B (2011) High-dimensional instrumental variables
regression and confidence sets. arXiv:1105.2454

[8] Lounici, K. (2008). Sup-norm convergence rate and sign concentration property
of Lasso and Dantzig estimators. Electronic Journal of Statistics 2 90-102.

[9] Koltchinskii, V. (2009). Dantzig selector and sparsity oracle inequalities.
Bernoulli 15 799-828.

[10] Koltchinskii, V. (2011). Oracle inequalities in empirical risk minimization and
sparse recovery problems. Saint-Flour Lectures Notes, 2008. To appear in Lec-
ture Notes in Mathematics.

[11] Petrov,V.V. (1995). Sums of Independent Random Variables. Oxford Univer-
sity Press.

[12] Rosenbaum, M. and Tsybakov A.B. (2010). Sparse recovery under matrix un-
certainty. The Annals of Statistics 38 2620–2651.

imsart-coll ver. 2011/05/20 file: CompensatedMU_submitted.tex date: July 5, 2011


