An IV Model of Quantile Treatment Effects

Readings Group - LMI

January 5, 2011
Introduction

Model
 Framework
 Theorem
 Assumptions

Identification
 Quick Overview of Identification Issues
Quantile Regression (QR) and IV

- QR useful to study heterogeneous impact of variables on outcome distribution.
- BUT QT inconsistent and incapable of measuring a causal effect if endogenous variables of interest.
- Ch. & Ha. (2005) develop a model of Quantile Treatment Effects (QTE) and prove identification.
Main Features of Ch. & Ha. (2005)

- Restricting conditions on the rank across treatment states.
- Identification of the true QTE through IV method without functional form assumptions.
- Address the endogeneity for discrete or continuous variables.
- Rank invariance and rank similarity (weaker) imply a testable moment condition
IVQR Model I

- D is treatment (exposed as binary but authors claim that it is wlog) and Y_d is potential outcome for realization d. Observed individual characteristics are $X = x$.

- Potential outcomes are measured by the Quantile Treatment Response function, noted, for some $\tau \in (0, 1)$:

$$q(d, x, \tau) \text{ (QTR)}$$

- Quantile Treatment Effects is, for some $\tau \in (0, 1)$:

$$q(1, x, \tau) - q(0, x, \tau) \text{ (QTE)}$$

- In general, for discrete case or continuous case, QTE are $q(d', x, \tau) - q(d, x, \tau)$ or $\frac{\partial q(d, x, \tau)}{\partial \tau}$. One integrates on τ for average effects.
Endogeneity and selection bias: realized treatment D is correlatively selected with potential outcomes Y_D.

Ch. & Ha. (2005) shows how one can estimate the quantiles of latent outcomes through a non-linear quantile-type conditional moment restriction and with an instrument Z:

$$
P[Y \leq q(D, X, \tau)|X, Z] = \tau$$ (1)

Z affects D and is independent of Y_D.

Z affect D and is independent of Y_D.

An IV Model of Quantile Treatment Effects
Rank variable

- Skorohod representation of latent outcomes:
 \[Y_d = q(d, X, U_d) \] where \(U_d \sim U(0, 1) \) where \(q(d, X, \tau) \) is the \(\tau \)-quantile of \(Y_d \mid X \).

- The idea is that \(q \) corresponds to \(F^{-1} \): \(U_d \) is the rank variable responsible for the heterogeneity (or unobserved characteristic e.g. “ability”).

\[
\begin{align*}
1 & \quad U_d \quad 0 \\
\{ & \quad Y \mid D, X \quad \}
\end{align*}
\]
Moment restriction

- Rank invariance (resp. similarity): $U_d|X, Z$ are equal (have same distribution conditional on X, Z and some random vector V). V plays a role in the selection of the treatment.

- Adding 4 main conditions (see assumptions below) jointly holding, the testable implication of the model is: $\forall \tau \in (0, 1)$,

$$
\mathbb{P}[Y \leq q(D, X, \tau)|X, Z] = \mathbb{P}[Y < q(D, X, \tau)|X, Z] = \tau \quad (2)
$$

- Intuition of the proof: Rank invariance means $U_d = U|X, Z$ and leads to

$$
\{ Y \leq q(D, X, \tau) \}\text{ equivalent to } \{ U \leq \tau \}
$$

- This theorem gives conditions to recover the quantiles of potential outcomes.
Assumptions

- A1: Conditional on $X = x$, $\forall d$, $Y_d = q(d, x, U_d)$ where $q(d, x, .)$ strictly increasing and $U_d \sim \mathcal{U}(0, 1)$.
- A2: $\forall d$, $U_d \perp Z|X = x$.
- A3: $D = \delta(Z, X, V)$ for δ unknown and V random vector.
- A4: Rank invariance (a) or rank similarity (b).
- A5: $D, X, Z, Y = q(D, X, U_D)$ are observed variables.
Discussion

- A2: Conventional independance restriction.
- A3: Representation of the selection mechanism and V describes the difference in treatment for observationnally identical individual (same Z, Y, Z but different D).
- A4a (RI): Same U (unobserved factor) leads to same rank across all treatment states. Choice of X may be crucial!
- A4b (RS): RI leads to degenerate potential outcomes but one can imagine true multivariate unobserved factors. RS allows the rank U_d to change across treatment spaces d.
Moment equation

- To non-parametrically identify a function $\mu(.)$, the idea is to write moment equation as a linear IV condition:

$$E(Y - \mu(D)|Z) = 0$$

- Identification conditions are often full rank conditions on the Jacobian of the moment equation (differentiation wrt Y).

- In the case of D, Z both binary, vector of moment equations writes with $y_D = (1 - D)y_0 + Dy_1$

$$\Pi(y = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}) = \begin{pmatrix} P[Y \leq y_D|Z = 0] - \tau \\ P[Y \leq y_D|Z = 1] - \tau \end{pmatrix}$$
Global Identification

- Identification means that y is the unique solution of $\Pi(y) = 0$ and is achieved under a full rank condition (FRC) on $\Pi'(y)$.
- Intuition of the FRC: impact of Z on (Y, D) is sufficiently rich (diversity of different treatment spaces conditional on Z).
- Monotone likelihood ratio condition is equivalent to FRC:

$$\forall y = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}, \quad \frac{f_{Y,D}(y_1, 1|Z = 1)}{f_{Y,D}(y_0, 0|Z = 1)} \geq \frac{f_{Y,D}(y_1, 1|Z = 0)}{f_{Y,D}(y_0, 0|Z = 0)}$$

- Partial Identification (i.e. Identification Region without FRC): see set-inference approach literature.
Conclusion

- Endogeneity in Q-reg
- Comparison with Abadie, Angrist, Imbens (2002) : see slides
- Identification of a non parametric model of QTE, causal (structural) interpretation of QTE.
- Large framework : discrete or continuous treatment but continuous outcomes.