Groupe de lecture

Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings

Abadie, Angrist, Imbens

Econometrica (2002)

02 décembre 2010
Objectives
Using IV to estimate the effect of treatment on the quantiles of an outcome distribution.

Illustration
Estimate the effect of training over the Job Training Partnership Act (JTPA).
Notation

- \(Y \) : continuously distributed scalar **outcome** variable \(\rightarrow \) earnings
- \(D \) : binary **treatment** indicator \(\rightarrow \) program **participation**
- \(Z \) : binary **instrument** \(\rightarrow \) randomized **offer of training**
- \(X \) : vector of **covariates**

NB: \(Z \neq D \)

- some people who were offered training does not receive it
- some people who were not offered training receive it anyway
Notation

- Potential outcomes: Y_0, Y_1 indexed against D.
- Potential treatment status: D_0, D_1 indexed against Z.
Assumptions

Assumption 2.1

(i) **Independence**: \((Y_0, Y_1, D_0, D_1)\) jointly independent of \((Z|X)\)

Condition d’exclusion

(ii) **Nontrivial Assignment**: \(P(Z = 1|X) \in (0, 1)\)

(iii) **First-Stage**: \(E(D_1|X) \neq E(D_0|X)\)

(iv) **Monotonicity**: \(P(D_1 \geq D_0|X) = 1 \rightarrow (\text{no defiers})\).
Lemma 2.1

2.1(i) \(\Rightarrow (Y_1, Y_0) \perp \perp (D|X, D_1 > D_0) \)

Proof

\((Y_0, Y_1, D_0, D_1) \perp \perp Z|X \Rightarrow (Y_0, Y_1) \perp \perp Z|X, D_1 = 1, D_0 = 0\)

and when \(D_1 = 1 \) and \(D_0 = 0 \), \(D \) can be substituted for \(Z \)
The population of compliers

Lemma 2.1: In the population of compliers, comparisons by D conditional on X have a causal interpretation.

Since $Z = 0 \Rightarrow D = 0$ (almost) in the JTPA, results for the population of compliers are also valid for the treated.

⇒ estimation on the population of compliers.
The QTE Model

Linear model for conditional quantiles:

\[Q_\theta(Y|X, D, D_1 > D_0) = \alpha_\theta D + X' \beta_\theta \]

- \(Q_\theta(Y|X, D, D_1 > D_0) \) is the \(\theta \)-quantile of \((Y|X, D)\) for compliers.
- \(\alpha_\theta \) is the difference in the conditional \(\theta \)-quantile of \(Y_1 \) and \(Y_0 \) for compliers.
- \(\alpha_\theta \neq \) the \(\theta \)-quantile of the difference \((Y_1 - Y_0)\).
\[(\alpha_{\theta}, \beta_{\theta}) = \arg\min_{(\alpha, \beta)} E[\rho_{\theta}(Y - \alpha D - X'\beta)|D_1 > D_0]\]

where the check function is:

\[\rho_{\theta}(\lambda) = \lambda(\theta - 1\{\lambda < 0\}) = \begin{cases}
\lambda \theta & \text{if } \lambda \geq 0 \\
\lambda(\theta - 1) & \text{if } \lambda < 0
\end{cases}\]
Lemma 2.1 \Rightarrow solution to this problem has a causal interpretation.

BUT : The set of compliers is not identified \Rightarrow the problem cannot be solved directly.
To involve observed quantities only:

\[\kappa(D, Z, X) = 1 - \frac{D(1 - Z)}{1 - \pi_0(X)} - \frac{(1 - D)Z}{\pi_0(X)} \]

where \(\pi_0 = P(Z = 1|X) \)

- \(\kappa = 1 \) when \(D = Z \)
- \(\kappa \) negative otherwise.
κ allows us to estimate the proportion of compliers:

Lemma 3.1 (Abadie (2000))

Let $h(Y, D, X)$ be any real function of (Y, D, X) such that $E|h(Y, D, X)| < \infty$. Given assumption 2.1,

$$E[h(Y, D, X)|D_1 > D_0] = \frac{1}{P(D_1 > D_0)} E[\kappa.h(Y, D, X)]$$
\[
(\alpha_\theta, \beta_\theta) = \arg\min_{(\alpha, \beta)} E[\rho_\theta(Y - \alpha D - X' \beta)|D_1 > D_0]
= \arg\min_{(\alpha, \beta)} E[\kappa \rho_\theta(Y - \alpha D - X' \beta)]
\]
In practice, they use the conditional expectation given $U = (Y, D, X)$:

$$
\kappa_{\nu} = E[\kappa|U] = 1 - \frac{D(1 - \nu_{0}(U))}{1 - \pi_{0}(X)} - \frac{(1 - D)\nu_{0}(U)}{\pi_{0}(X)}
$$

avec $\nu_{0}(U) = E[Z|U] = P(Z = 1|Y, D, X)$

Lemma 3.2

Under assumption 2.1, $\kappa_{\nu}(U) = P(D_1 > D_0|U)$
Proof

The product $D.(1 - Z)$ differs from 0 only if $Z = 0$ and $D_0 = 1$. By monotonicity, $D_0 = 1$ implies $D_1 = 1$. Thus:

$$E[D.(1 - Z)|U] = P(D(1 - Z) = 1|U)$$
$$= P(D_1 = D_0 = 1|U).P(Z = 0|D_1 = D_0 = 1, U)$$
$$= P(D_1 = D_0 = 1|U).P(Z = 0|D_1 = D_0 = 1, Y_1, X)$$
$$= P(D_1 = D_0 = 1|U).P(Z = 0|X)$$

Similarly, $E[(1 - D).Z|U] = P(D_1 = D_0 = 0|U).P(Z = 1|X)$

$$\kappa_\nu(U) = E\left[1 - \frac{D(1 - Z)}{P(Z = 0|X)} - \frac{(1 - D)Z}{P(Z = 1|X)}\right]|U$$
$$= 1 - P(D_1 = D_0 = 1|U) - P(D_1 = D_0 = 0|U)$$
$$= P(D_1 > D_0|U)$$
Estimation strategy

• First step: non parametric estimation of $\nu_0(U)$ and $\pi_0(X) \Rightarrow$ estimate of $\kappa_{\nu}(U)$

• Second step: estimation of

$$
\hat{\delta}_\theta = \arg\min_{\delta} \frac{1}{n} \sum_{i=1}^{n} \{ \hat{\kappa}_{\nu}(U_i) \geq 0 \} . \hat{\kappa}_{\nu}(U_i) . \rho_\theta(Y_i - W'_i \delta)
$$

where $W = (D, X')'$ and $\delta_\theta = (\alpha_\theta, \beta_\theta)$
Asymptotic properties

THEOREM 3.1
Under assumptions 2.1 and 3.1 (and some conditions),

\[n^{\frac{1}{2}} (\hat{\delta}_\theta - \delta_\theta) \xrightarrow{d} N(0, \Omega) \]

THEOREM 3.2
Under assumptions 2.1 and 3.1 (and some conditions),

\[\hat{\Omega} \xrightarrow{p} \Omega \]
The JTPA

- From October 1983 to the late 1990’s.
- Largest component = **Title II**, which supports training for the economically disadvantaged.
- Applicants were **randomly selected** for JTPA treatments within sites.
- **Outcome** = **sum of earnings** in the 30th months period after assignment.
The JTPA

JTPA services offer:

• classroom training in occupational skills and/or basic education
• on-the-job training and/or job search assistance
• other services.
The JTPA

JTPA eligibility:

- long term use of welfare
- high school drop out
- 15 or more recent weeks of unemployment
- limited English proficiency
- physical or mental disability
- reading proficiency < 7th grade
- arrest record
Estimation

- Y: 30-month earnings

- D: enrollment for JTPA services

- Z: offer of services
 - 60% of those offered training actually received JTPA services.
 - less than 2% of the control group received JTPA services.

- X: dummies for Black and Hispanic applicants, dummy for high-school graduates, dummies for married applicants, age-group dummies, dummy for unemployment.
Estimation

- **OLS** as benchmark for **Quantile regression**
- **2SLS** as benchmark for **Quantile Treatment Effect**, with the randomized offer of treatment as an instrument.
Results

- **Table II** : QUANTILE REGRESSION and OLS : gap in quantiles by trainee status is much larger below the median than above. BUT not necessarily have a causal interpretation.

- **Table III** : QUANTILE TREATMENT EFFECT and 2SLS :
 - Men : no evidence of an impact of the treatment at low quantiles, whereas effects above the median are large and significant.
 - Women : significant effects of the treatment at every quantile, with the largest proportional effects at law quantiles.