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Abstract

The purpose of the paper is to introduce, in a discrete-time no-arbitrage pricing context, a bridge

between the historical and the risk-neutral state vector dynamics which is wider than the one

implied by a classical exponential-affine stochastic discount factor (SDF) and to preserve, at the

same time, the tractability and flexibility of the associated asset pricing model. This goal is achieved

by introducing the notion of Exponential-Quadratic SDF or, equivalently, the notion of Second-

Order Esscher Transform. The log-pricing kernel is specified as a quadratic function of the factor

and the associated sources of risk are priced by means of possibly non-linear stochastic first-order

and second-order risk-correction coefficients. Focusing on security market models, this approach

is developed in the multivariate conditionally Gaussian framework and its usefulness is testified

by the specification and calibration of what we name the Second-Order GARCH Option Pricing

Model. The associated European Call option pricing formula generates a rich family of implied

volatility smiles and skews able to match the typically observed ones.
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1. Introduction

Discrete-time asset pricing models are now widespread in the economic and financial liter-

ature and they are successfully used in many research fields, like bond and option pricing,

longevity risk, liquidity and credit risk modelling, as well as exchange rate and macro-finance

modelling. This large class of models contains two important families following two different

asset pricing modelling principles : the first one is built on the notion of stochastic discount

factor (SDF), while the second one is based on the concept of (local) risk-neutral valuation

relationship (RNVR or LRNVR).

The first set of models invokes the absence of arbitrage opportunity in order to typically

introduce an exponential-affine (in the factor) SDF which provides a bridge between the

historical world and the risk-neutral one [see Gourieroux and Monfort (2007)]. Since the

three mathematical objects specifying the models, namely the historical dynamics of the

state vector, its risk-neutral (R.N.) dynamics and the one-period SDF are linked together,

three modelling strategies naturally appear (the so-called Direct Modelling, Risk-Neutral

Constrained Direct Modelling and Back Modelling strategies). In each of them two objects

are specified (and, possibly, the short rate if it is not assumed to be exogenous or a known

function of the state vector) and the third one is obtained as a byproduct. This general

discrete-time no-arbitrage asset pricing setting, formalized by Bertholon, Monfort and Pe-

goraro (2008) [BMP (2008), hereafter], has shown its large flexibility in various contexts

(finance and macro-finance yield curve models, credit risk analysis, longevity risk, exchange

rate risk).

In the second set of models the vector of state variables is made only of asset returns and

a RNVR or LRNVR is introduced imposing that: i) the historical and risk-neutral dynamics

belong to the same parametric families; ii) the R.N. expectation of the (arithmetic) returns

of the basic assets are equal to the riskless (arithmetic) returns; iii) the historical and risk-
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neutral variance-covariance matrix of the state-vector, conditional to the past, are the same

functions of the past. These RNVR or LRNVR are usually justified by a combination of

assumptions on agents preferences and on probability distributions [see Rubinstein (1976),

Brennan (1979), Duan (1995), Camara (2003)].

The assumptions made in both approaches obviously reduce the set of possible admissible

pairs of historical and risk-neutral dynamics. For instance, in the first approach, even if the

assumption of an exponential-affine SDF is well justified in the literature, in particular in

consumption-based asset pricing models, in terms of minimal entropy martingale measure, in

terms of discretization of continuous time security market models and in terms of tractability

of the pricing formula1, it is not imposed by the absence of arbitrage opportunity principle

which only requires the positivity of the pricing kernel and, possibly, internal consistency

conditions. Among the consequences of this assumption let us mention the fact that, in con-

ditionally Gaussian models, the historical and risk-neutral conditional variance-covariance

matrices of the state vector are the same function of the past, like in the LRNVR approach.

In this paper we adopt the first kind of approach and we introduce a wider bridge between

the historical and the risk-neutral probability. More precisely, we introduce the notion of

Exponential-Quadratic SDF or, equivalently, the notion of Second-Order Esscher Transform

generalizing the classical Esscher Transform introduced by Gerber and Shiu (1994) [see also

Buhlmann, Delbaen, Embrechts and Shiryaev (1998) and Gourieroux and Monfort (2007)].

The log-pricing kernel is specified as a quadratic function of the factor and the associated

sources of risk are priced by means of first-order and second-order risk-correction coefficients2.

Focusing on security market models, this approach, developed in the multivariate condi-

1See, among others, Bansal and Yaron (2004), Bertholon, Monfort and Pegoraro (2006), Campbell and
Cochrane (1999), Darolles, Gourieroux and Jasiak (2006), Bonomo, Garcia, Meddahi and Tedongap (2011),
Gourieroux, Jasiak and Sufana (2009), Gourieroux, Monfort and Polimenis (2006), Monfort and Pegoraro
(2007), Stutzer (1995).

2Empirical evidence of a second-order term in the pricing kernel and in the log-pricing kernel can be
found in Chapman (1997) and Engle and Rosenberg (2002), respectively.
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tionally Gaussian framework, makes possible to price mean-based and variance-covariance-

based sources of risk regardless the presence of homoscedasticity or conditional heteroscedas-

ticity in the factor’s dynamics. More precisely, our methodology implies that the factor’s

risk-neutral mean is a function of the short rate and of the risk-neutral conditional variance-

covariance matrix which is different from the historical one because of the second-order

risk-correction coefficients. Therefore, our exponential-quadratic change of probability mea-

sure involves a factor’s risk-neutral conditional variance-covariance matrix different from the

historical one, while keeping the risk-neutral probability equivalent to the historical one.

This result is a relevant generalization of the continuous-time (Girsanov-based) change of

probability measure where a risk-neutral diffusion term different from the historical one

would imply mutually singular historical and risk-neutral probabilities. In this way we also

extend to a general multivariate no-arbitrage asset pricing (SDF-based) framework the re-

sults provided by Bakshi and Madan (2007) and Hansen, Heaton and Li (2008) in structural

frameworks, and those of Christoffersen, Elkhami, Feunou and Jacobs (2010) proposed in

a no-arbitrage scalar setting. Moreover, if the Back Modelling strategy is adopted, the

(stochastic) first-order and second-order risk-correction coefficients can be specified as any

non-linear function of the present and past values of the factor, while keeping the historical

factor dynamics computationally tractable (i.e. with a likelihood function known in closed

form or by standard filtering techniques). This specification also provides a generalization

of the exponential-quadratic changes of probability measures proposed by the continuous-

time and discrete-time literature on Quadratic-Gaussian (QG) or on Wishart Autoregressive

(WAR) asset pricing models where, for tractability reasons, the risk-correction coefficients

are constant or specified as deterministic functions of time or as affine functions of the factor

[see Buraschi, Porchia and Trojani (2010), Cheng and Scaillet (2007), Gourieroux, Jasiak

and Sufana (2009), Gourieroux and Sufana (2011) and Leippold and Wu (2002)]. In or-

der to present a more precise interpretation of the first-order and second-order stochastic
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risk-sensitivity functions, we calculate (in our conditionally Gaussian framework) the one-

period risk premium and we compare it with the first-order risk premium generated by the

exponential-affine SDF. We also calculate the Second-Order Black and Scholes (1973) pricing

formula for European Call options and we find that it explicitly depends on the second-order

risk-sensitivity parameter.

In addition, in order to provide further insight into the usefulness of our approach, we

specify and calibrate what we name the Second-Order GARCH Option Pricing Model. First,

we assume that the historical dynamics of the index return is described by an AR(1)-

GARCH(1,1) process with leverage [see, among the others, Amin and Ng (1993), Engle

and Mustafa (1992), Duan (1995) and Heston and Nandi (2000)] and we estimate, by the

maximum likelihood method, historical parameters using S&P500 daily stock returns ob-

served from July 1, 1962 to December 31, 2001. Second, we adopt our exponential-quadratic

SDF-based change of probability measure generating a risk-neutral dynamics characterized

by a market price of variance risk (i.e., the second-order risk-correction coefficient) that we

specify as a function of not only the present return but also of the lagged variance risk

term. Third, we calibrate risk-neutral parameters in order to study the larger set of implied

volatility shapes that our model is able to provide, compared to the one obtained in the

exponential-affine SDF setting [see Christoffersen and Jacobs (2004)]. Indeed, it is impor-

tant to highlight that, in the latter case, once historical parameters are estimated using the

time series of stock returns and once the no-arbitrage principle is imposed, the risk-neutral

dynamics does not deliver any free parameter and therefore the associated implied volatility

curve (smile or smirk) turns out to be indifferent to the cross-section of option prices. The

calibration exercise shows the ability of our option pricing model to generate a rich family

of implied volatility smiles and skews which can match the typically observed ones [see, for

instance, Pan (2002)].

It is worth noting that, even if the paper focuses on security market models, we do
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not make any particular assumption about the state vector and therefore this SDF-based

approach (contrary to the RNVR and LRNVR ones) could be used not only in option pricing

models, but also for instance in interest rate and credit risk models.

The paper is organized as follows. In Section 2 we define the Second-Order Esscher

Transform of a probability density function and we show, thanks to some examples, how it

generalizes the family of probability distributions generated by the classical (First-Order)

Esscher Transform (associated proofs are provided in the Appendix). Section 3 presents

the Exponential-Quadratic Stochastic Discount Factor modelling principle in a multivariate

setting, and shows how the associated change of probability measure is given by a conditional

Second-Order Esscher Transform. Sections 4.1 to 4.3 deal with multivariate conditionally

Gaussian economies specified by following either the Direct or the Back Modelling strategy

defined in BMP (2008). In Section 4.4 we present and calibrate the Second-Order GARCH

Option Pricing Model, Section 4.5 mentions the generalization to Conditionally Gaussian

Switching Regimes (CGSR) economies, while Section 5 concludes.

2. The second-order Esscher transform

Let us consider a probability P defined on Rn, and f its probability density function (p.d.f.)

with respect to some measure ν. The purpose of this section is to introduce a new family of

probability distributions, associated with the p.d.f. f , having the classical Esscher Transform

as a subset [see Gerber and Shiu (1994)]. This new family, that we call Second-Order Esscher

Transforms and which is built upon the concept of Second-Order Laplace Transform, gives

the possibility, for instance, to modify not only the mean but also the variance-covariance

matrix of a multivariate Gaussian distribution or the mean and the variance-covariance

matrix of the components of a mixture of multivariate Gaussian distributions (see examples

below).
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Definition 1 (Second-Order Laplace Transform) : The Second-Order Laplace

Transform of the p.d.f. f(y) is :

ϕS(θ1, θ2) =
∫

Rn f(y) exp(θ
′

1y + y′θ2y)dν(y) (1)

with θ1 ∈ Rn, θ2 ∈ Sn(R) an (n × n) real symmetric matrix3 and θ = (θ1, θ2) ∈ Θ, Θ being

the definition set {(θ1, θ2) ∈ Rn × Sn(R) :
∫

Rn f(y) exp(θ
′

1y + y′θ2y)dν(y) <∞}.

Definition 2 (Second-Order Esscher Transform) : The Second-Order Esscher

Transform of P associated with (θ1, θ2), denoted by S(θ1,θ2)(P), is given by the family of

probability distributions defined by the p.d.f.:

g(y; θ1, θ2) =
f(y) exp(θ

′

1y + y′θ2y)

ϕS(θ1, θ2)
. (2)

If we assume θ2 = 0 in (2), we find the classical (First-Order, say) Esscher Transform that

we may denote F(θ1)(P). Let us now present examples of Second-Order Esscher Transforms

[the proofs are given in the Appendix].

2.1. Discrete distribution

Let us assume that ν is a counting measure on a (possibly infinite) discrete space D ⊂ Rn

defined by the point masses {pd, d ∈ D}. The associated Second-Order Esscher transform is

the family of probability distributions on D with probability masses:

pd exp(θ′1d+ d′θ2d)∑

d∈D

pd exp(θ′1d+ d′θ2d)
, d ∈ D ,

(3)

3Observe that the assumption θ2 ∈ Sn(R) is not a restriction since any square matrix A (say) is the sum
of a symmetric matrix (A + A′)/2 and of an antisymmetric matrix (A − A′)/2, and since a quadratic form
associated to an antisymmetric matrix is equal to zero.
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assuming
∑

d∈D

pd exp(θ′1d+ d′θ2d) <∞.

2.2. Univariate Gaussian distribution

The Second-Order Esscher transform of the p.d.f. of a univariate (n = 1) Gaussian random

variable N(µ, σ2) is given by:

g(y; θ1, θ2) =
1√

2π σ2

1−2θ2σ2

exp

[

−
(

1 − 2θ2σ
2

2σ2

) (
y − (µ+ θ1σ

2)

1 − 2θ2σ2

)2
]

, (4)

which is, under the condition θ2 <
1

2σ2 , the p.d.f. of the family of the Gaussian random

variables N

(
(µ+ θ1σ

2)

1 − 2θ2σ2
,

σ2

1 − 2θ2σ2

)
. Compared with N(µ, σ2), this family has not only

different means (driven by the two parameters (θ1, θ2)) but also different variances (driven

by θ2). Observe that any Gaussian distribution can be reached when θ = (θ1, θ2) varies in

Θ = R ×
]
−∞, 1

2σ2

[
.

2.3. Multivariate Gaussian distribution

The Second-Order Esscher transform of the p.d.f. of a n-dimensional Gaussian random

variable N(µ,Σ) is:

g(y; θ1, θ2) =
1

(2π)n/2
√

det [(Σ−1 − 2θ2)−1]
×

exp

[
−1

2
(y − (I − 2Σθ2)

−1(µ+ Σθ1))
′(Σ−1 − 2θ2)(y − (I − 2Σθ2)

−1(µ+ Σθ1))

]
,

(5)

that is the p.d.f. of the family of the n-dimensional Gaussian random variable N((I −

2Σθ2)
−1(µ + Σθ1), (Σ

−1 − 2θ2)
−1) if (Σ−1 − 2θ2) is assumed to be a symmetric positive

definite matrix, that is if (Σ−1 − 2θ2) ∈ S+
n (R) or, equivalently, if the eigenvalues of θ2Σ are

smaller than 1
2

that is, if θ2 = Σ−1/2ADA′Σ−1/2, where D is a diagonal matrix with diagonal
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terms smaller than 1
2

and A is an orthogonal matrix4. Like in the previous example, for any

given (θ1, θ2), the Gaussian random variable generated by (2) has a different mean as well

as a different variance-covariance matrix and any n-dimensional Gaussian distribution can

be reached. When we assume θ2 = 0, we degenerate to the First-Order Esscher transform

F(θ1)(P) inducing a different conditional mean (µ+ Σθ1) but maintaining the same variance-

covariance matrix Σ.

2.4. Finite mixture of multivariate Gaussian distributions

Given a finite mixture of n-dimensional Gaussian random variables with p.d.f. f(y) =

∑J
j=1 λj n(y;µj,Σj), the associated family of probability density functions generated by the

Second-Order Esscher Transform is:

g(y; θ1, θ2) =

J∑

j=1

λ∗j n

(
y; (I − 2Σjθ2)

−1(µj + Σjθ1), (Σ
−1
j − 2θ2)

−1

)
,

with λ∗j =
λjϕS,j(θ1, θ2)∑J
j=1 λjϕS,j(θ1, θ2)

,

(6)

ϕS,j(θ1, θ2) =
∫

Rn exp(θ1y + y′θ2y)n(y;µj,Σj)dy

= exp

[
−1

2
log det (I − 2Σjθ2) −

1

2
µ′

jΣ
−1
j µj +

1

2
(Σ−1

j µj + θ1)
′(Σ−1

j − 2θ2)
−1(Σ−1

j µj + θ1)

]
,

and 0 ≤ λ∗j ≤ 1,
∑J

j=1 λ
∗
j = 1 .

(7)

This is the family of p.d.f. of a n-dimensional Finite Mixture of J Gaussian random variables

N((I−2Σjθ2)
−1(µj+Σjθ1), (Σ

−1
j −2θ2)

−1), j ∈ {1, . . . , J}, each component having a different

4Indeed, θ2Σ has the same eigenvalues as the symmetric matrix Σ1/2 θ2 Σ1/2.
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mean and a different variance-covariance matrix, as well as different mixing weights.

3. The exponential-quadratic stochastic discount fac-

tor modelling principle

3.1. General information and historical distribution

In what follows, we consider an economy between dates 0 and T . The new information in

the economy at date t is denoted by wt, while wt = (wt, wt−1, ..., w0) is the entire information

between 0 and t. The random vector wt is called a factor or a state vector, its dimension is

n and it can be made up of latent or observable variables like asset prices or macro variables.

The historical dynamics of wt is defined by the conditional distribution of wt+1 given

wt, denoted by Pt+1 (say) and characterized either by the p.d.f. ft(wt+1|wt) or the Laplace

transform ϕt(u|wt), or the Log-Laplace transform ψt(u|wt) = log[ϕt(u|wt)].

3.2. The exponential-quadratic stochastic discount factor

3.2.1. The general case with non-linear stochastic path-dependent risk-correction coeffi-

cients

The purpose of this section is to generalize the classical exponential-affine SDF change of

probability (i.e., the conditional First-Order Esscher Transform)5 by means of the conditional

5The asset pricing literature has in general derived or specified Mt,t+1(wt+1) as an exponential-affine func-
tion of wt+1. Indeed, this form naturally stands out in equilibrium models like CCAPM [see e.g. Cochrane
(2005)], consumption-based asset pricing models with habit formation or with Epstein-Zin preferences [see,
among others, Bansal and Yaron (2004), Campbell and Cochrane (1999), Bonomo, Garcia, Meddahi and
Tedongap (2011), Garcia, Renault and Semenov (2006)]. Moreover, in general continuous-time security mar-
ket models the discretized version of the SDF is exponential-affine [see Gourieroux and Monfort (2007)].
Finally, the exponential-affine specification is particularly well adapted to the Laplace Transform which is a
central tool in discrete-time asset pricing theory [see e.g. Bertholon, Monfort and Pegoraro (2006), Darolles,
Gourieroux and Jasiak (2006), Gourieroux, Jasiak and Sufana (2009), Gourieroux, Monfort and Polimenis
(2006), Monfort and Pegoraro (2007)].
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Second-Order Esscher Transform that is, by introducing the following exponential-quadratic

SDF:

M
(S)
t,t+1 = exp

[
−rt+1(wt) + α′

1,t(wt)wt+1 + w′

t+1α2,t(wt)wt+1 − ψS,t(α1,t, α2,t|wt)
]
, (8)

with ψS,t(α1,t, α2,t|wt) = logϕS,t(α1,t, α2,t|wt), ϕS,t(α1,t, α2,t|wt) = Et[exp(α′
1,twt+1+w

′
t+1α2,twt+1)]

the conditional second-order Log-Laplace transform and where α2,t is a (time-varying) (n×n)

symmetric matrix (α2,t ∈ Sn(R)).

The Risk-Neutral (R.N.) conditional distribution Qt+1 of wt+1, given wt, has an exponential-

quadratic (in wt+1) p.d.f. with respect to Pt+1 given by:

dQ,S
t (wt+1|wt) =

M
(S)
t,t+1(wt+1)

Et

[
M

(S)
t,t+1(wt+1)

] = exp
[
α′

1,twt+1 + w′

t+1α2,twt+1 − ψS,t(α1,t, α2,t)
]
, (9)

and, therefore, the R.N. conditional p.d.f. (with respect to the same measure as the corre-

sponding conditional historical probability) is fQ,S
t (wt+1|wt) = ft(wt+1|wt)d

Q,S
t (wt+1|wt) and

the R.N. conditional second-order Log-Laplace transform is:

ψQ
S,t(u1, u2) = ψS,t(u1 + α1,t, u2 + α2,t) − ψS,t(α1,t, α2,t) , u1 ∈ Rn , u2 ∈ Sn(R) . (10)

Conversely, the p.d.f. of the conditional historical distribution with respect to the R.N.

one is given by :

dP,S
t (wt+1|wt) =

1

dQ,S
t (wt+1|wt)

= exp
[
−α′

1,twt+1 − w′
t+1α2,twt+1 + ψS,t(α1,t, α2,t)

]

= exp
[
−α′

1,twt+1 − w′
t+1α2,twt+1 − ψQ

S,t(−α1,t,−α2,t)
]
,

(11)

since, using (10) with u1 = −α1,t and u2 = −α2,t, we have ψQ
S,t(−α1,t,−α2,t) = −ψS,t(α1,t, α2,t).

We get the following :
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Proposition 1 : If we consider the exponential-quadratic stochastic discount factor M
(S)
t,t+1,

the risk-neutral conditional distribution Qt+1 of wt+1, conditionally to wt, is the condi-

tional Second-Order Esscher Transform of Pt+1 associated with (α1,t, α2,t), that is Qt+1 =

S(α1,t,α2,t)(Pt+1). Conversely, the historical conditional distribution Pt+1 is the conditional

Second-Order Esscher Transform of Qt+1 associated with (−α1,t,−α2,t), that is Pt+1 =

S(−α1,t,−α2,t)(Qt+1).

We will see in the following sections that first, if the Back Modelling strategy is adopted,

α1,t and α2,t, namely the stochastic risk-correction coefficients, are allowed to be any non-

linear function of the present and past values of the factor wt, while keeping the historical

factor dynamics computationally tractable (i.e. providing a likelihood function in closed form

or by standard filtering techniques). This specification clearly provides a generalization of the

changes of probability measure proposed by the continuous-time and discrete-time literature

on Quadratic-Gaussian term structure models or on Wishart Autoregressive (WAR) asset

pricing models where, for tractability reasons, the risk-correction coefficients are constant or

deterministic functions of time or affine functions of the factor [see Singleton (2006, Chapter

12), Gourieroux and Sufana (2010, 2011)].

Second, we will also see that our exponential-quadratic change of probability measure

involves a risk-neutral conditional variance-covariance matrix of the factor different from the

historical one while keeping at the same time the probability measure Q equivalent to P.

This kind of result can not be obtained by a continuous-time (Girsanov-based) approach,

since a risk-neutral diffusion term different from the historical one would imply Q and P

mutually singular [see Cont and Tankov (2004)].

3.2.2. Structural justifications of M
(S)
t,t+1

It is interesting to observe that the asset pricing literature has also recently provided some

structural justification for the exponential-quadratic SDF assumption characterizing our no-
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arbitrage approach. For instance, Bakshi and Madan (2007), working in a simple static and

univariate setting and aggregating the marginal rate of substitution of power utility investors

that are either long or short the market index, determine an exponential-quadratic (in the

scalar index return) SDF when the risk-aversion parameter among agents φ (say) is normally

distributed.

In a more realistic dynamic framework, characterized by a discrete-time recursive utility

model à la Epstein and Zin (1989) in which the state of the economy follows a Gaussian

VAR(1) process and the (geometric one-period) consumption growth is a linear function of

that state vector, Hansen, Heaton and Li (2008) obtain an exponential-quadratic specifica-

tion by linearizing the log-SDF around the log of the (explicit and exponential-affine) SDF

computed when the inverse of the EIS (elasticity of intertemporal substitution) parameter

(namely, ρ) is assumed to be equal to one. This quadratic term can, thus, be associated to an

economy able to provide a (empirically suggested) time-varying wealth-consumption ratio,

while the exponential-affine SDF case (ρ = 1) obliges this ratio to be unrealistically constant

[see Hansen, Heaton, Li and Roussanov (2007) and the references therein for further details].

3.3. Internal consistency conditions

The no-arbitrage discrete-time asset pricing setting, based on an exponential-affine SDF

Mt,t+1, conveniently provides explicit conditions, through the historical and R.N. Log-Laplace

transforms ψt and ψQ
t , to guarantee the internal consistency of the model [see BMP (2008)

for details]. These Internal Consistency Conditions (ICC) are easily extended to the case of

an exponential-quadratic SDF M
(S)
t,t+1(wt+1). Let us consider, for instance, the situation in

which the factor wt+1 contains (at least) a geometric stock return and in which the short rate

rt+1 is exogenous. If wj,t+1 = e′jwt+1 is a scalar geometric return (ej being the jth column of
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the identity matrix In×n) we must have:

exp(−rt+1)E
Q
t [exp(wj,t+1)] = 1 ⇐⇒ rt+1 = ψQ

S,t(ej , 0)

⇐⇒ rt+1 = ψS,t(α1,t + ej , α2,t) − ψS,t(α1,t, α2,t) .
(12)

4. Conditionally Gaussian economies

4.1. Pricing mean-based and variance-covariance-based sources of risk

Let us assume that the factor wt is a n-dimensional vector of geometric stock returns of risky

assets, that is wi,t+1 = log(Si,t+1/Si,t) for each i ∈ {1, . . . , n}, where Si,t is the price at t of

asset i. If we follow the Direct Modelling strategy formalized by Bertholon, Monfort and

Pegoraro (2008), we first have to specify the historical dynamics (Pt+1) of wt+1. Assuming

conditional normality, that is:

wt+1|wt
P∼ N (µt,Σt) , (13)

we have to choose µt and Σt (for instance, VAR and VARMA models with GARCH-type

noise). Second, we have to specify α1,t and α2,t appearing in the exponential-quadratic SDF

(8) and to impose the ICC (12):

rt+1 = ψS,t(ei + α1,t, α2,t) − ψS,t(α1,t, α2,t) , where

ψS,t(u1, u2) = −1

2
log det (I − 2Σtu2) −

1

2
µ′

tΣ
−1
t µt

+
1

2
(Σ−1

t µt + u1)
′(Σ−1

t − 2u2)
−1(Σ−1

t µt + u1) ,

(14)
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which implies :

rt+1 =
1

2
(Σ−1

t µt + ei + α1,t)
′(Σ−1

t − 2α2,t)
−1(Σ−1

t µt + ei + α1,t)

−1

2
(Σ−1

t µt + α1,t)
′(Σ−1

t − 2α2,t)
−1(Σ−1

t µt + α1,t)

=
1

2
e′i(Σ

−1
t − 2α2,t)

−1ei + e′i(I − 2Σtα2,t)
−1(µt + Σtα1,t) ∀ i ∈ {1, . . . , n} ,

(15)

that is :

1

2
vdiag [(Σ−1

t − 2α2,t)
−1] + (I − 2Σtα2,t)

−1(µt + Σtα1,t) = rt+1e , (16)

where e denotes the n-dimensional unitary vector.

Proposition 2 : The specification of the historical dynamics (13) and of the exponential-

quadratic SDF (8) implies the following R.N. dynamics (Qt+1):

wt+1|wt
Q∼ N

[
(I − 2Σtα2,t)

−1(µt + Σtα1,t), (Σ
−1
t − 2α2,t)

−1
]
, (17)

that is, Qt+1 = S(α1,t,α2,t)(Pt+1). If we impose to (17) the ICC (16), we find that the R.N.

dynamics compatible with no-arbitrage restrictions is:

N

[
rt+1e−

1

2
vdiag ((Σ−1

t − 2α2,t)
−1), (Σ−1

t − 2α2,t)
−1

]
. (18)

It is important to stress that this exponential-quadratic SDF change of probability measure

induces three generalizations with respect to the exponential-affine one. First, it provides a

different R.N. conditional mean and conditional variance-covariance matrix, namely:

µQ
t = rt+1e−

1

2
vdiag (ΣQ

t )

ΣQ
t = (Σ−1

t − 2α2,t)
−1 ,

(19)

because of the second-order risk-sensitivity function α2,t. On the contrary, in the continuous-

time (Brownian motion-based) framework, the risk-neutral diffusion term has to be equal
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to the historical one (ΣQ
t = Σt, in our notation) in order to guarantee Q equivalent to P,

otherwise the two measures would be mutually singular.

Second, for a given historical dynamics (estimated using stock return observations)

and under no-arbitrage restrictions, the Gaussian risk-neutral dynamics, contrary to the

exponential-affine setting, still delivers free parameters (those specifying α2,t) adapted to

match derivative prices.

Third, the time-varying risk-sensitivity functions characterizing the SDF are given by :

α2,t =
1

2
Σ−1

t

[
ΣQ

t − Σt

]
(ΣQ

t )−1 =
Σ−1

t − (ΣQ
t )−1

2
, and

α1,t = (ΣQ
t )−1µQ

t − Σ−1
t µt ,

(20)

and, therefore, they can be seen respectively as a normalized measure of the historical and

risk-neutral variance-covariance spread, and as a (variance-weighted) measure of the his-

torical and risk-neutral mean spread. Observe that the (explicit) ICC (16) makes α1,t a

function of α2,t and the latter can be any function of the date t information (i.e., a stochastic

risk-correction coefficient) such that ΣQ
t ∈ S+

n (R).

4.2. Generalized market risk premium (GMRP) and second-order Black and

Scholes pricing formula

In order to provide a more precise interpretation of the risk-sensitivity functions α1,t and

α2,t, let us define the scalar market risk premium between t and t + 1, associated to any

stock return wi,t+1 for i ∈ {1, . . . , n}, in the following way:

λ
(i)
t,t+1 = logEt[exp(wi,t+1)] − rt+1 ,

and let us collect them in the vector λt,t+1 =
[
λ

(1)
t,t+1, . . . , λ

(n)
t,t+1

]′
. Then, using (16), we can
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write the following n-dimensional generalized market risk premium (GMRP):

λt,t+1 = µt +
1

2
vdiag (Σt) − rt+1 e

= µt − µQ
t (α2,t) −

1

2
vdiag (ΣQ

t (α2,t) − Σt)

= λF
t,t+1 +

[
µQ

t (0) − µQ
t (α2,t)

]
− 1

2
vdiag (ΣQ

t (α2,t) − Σt) ,

(21)

with λF
t,t+1 := (µt −µQ

t (0)) = −Σt α1,t denoting the n-dimensional (first-order) risk premium

associated to an exponential-affine SDF (and e denoting the n-dimensional unitary vector).

Relation (21) shows the role played by α2,t, that is, the consequences on the risk premium

of the introduction of a quadratic term in the SDF:

i) if we assume α2,t = 0 (an exponential-affine SDF) we find λt,t+1 = λF
t,t+1, that is,

the risk premium is (classically) determined comparing only historical and risk-neutral

factor conditional means and −α1,t can be interpreted as a first moment-based risk

premium per unit of conditional variance-covariance;

ii) if α2,t 6= 0, the size of λt,t+1 depends positively on the mean spread (µt − µQ
t (α2,t))

and negatively on the variance spreads vdiag (ΣQ
t (α2,t) − Σt), that empirical evidence

finds to be (both) positive [see, among the others, Bakshi and Madan (2006)]. Al-

ternatively, λt,t+1 differs from λF
t,t+1 because α2,t introduces in the GMRP not only

a second moment-based source of risk information (Σt 6= ΣQ
t (α2,t)), but also because

it also modifies the role played by the first moment-based source of risk information

(µQ
t (α2,t) 6= µQ

t (0)).

It is also relevant to observe that, when considering the particular scalar (n = 1) static case

(rt+1 = r, σt = σ, α2,t = α2), we immediately find a (discrete-time) generalization of the

Black and Scholes (1973) setting and an associated European Call option pricing formula

CBS(t, h;K,St, r, σ
2) (say), where K is the strike price and h denotes the residual maturity.

Indeed, the Gaussian stock return risk-neutral dynamics, namely IIN
[
r − (σQ)2(α2)/2,
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(σQ)2(α2)
]
, immediately delivers the following explicit Second-Order Black and Scholes pric-

ing formula (for European Call options):

C
(S)
BS (t, h;K,St, r, σ

2, α2) = CBS(t, h;K,St, r, (σ
Q)2(α2)) , (22)

in which α2 is an additional degree of freedom with respect to the classical Black and Scholes

one (α2 = 0 implies C
(S)
BS (t, h;K,St, r, σ

2, 0) = CBS(t, h;K,St, r, σ
2)). This source of flexibil-

ity can be further exploited by specifying α2,t as a deterministic function of time, still leading

to an explicit pricing formula. Moreover, we can easily propose, in a dynamic setting, richer

Call option pricing formulas if we assume σ2
t and α2,t functions of the date t information. In

that case, the pricing formula has no longer a closed form but it can be easily determined

by simulation for any residual maturity h.

4.3. The back modelling approach to conditionally Gaussian economies

Let us maintain the conditionally Gaussian setting of the previous section, but let us now

adopt the Back Modelling strategy of Bertholon, Monfort and Pegoraro (2008) opening the

way for a tractable and flexible specification of the asset pricing model of interest. More

precisely, let us assume that the R.N. dynamics (Qt+1) of wt+1 is given by:

wt+1|wt
Q∼ N

(
µQ

t ,Σ
Q
t

)
, (23)

with the associated conditional second-order Log-Laplace transform

ψQ
S,t(u1, u2) = −1

2
log det (I − 2ΣQ

t u2) −
1

2
µQ

t
′(ΣQ

t )−1µQ
t

+
1

2
[(ΣQ

t )−1µQ
t + u1]

′[(ΣQ
t )−1 − 2u2]

−1[(ΣQ
t )−1µQ

t + u1] ,
(24)
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and we impose the ICC ψQ
S,t(ei, 0) = rt+1 for all i ∈ {1, . . . , n}, that is:

rt+1 = −1

2
µQ

t
′(ΣQ

t )−1µQ
t +

1

2
[(ΣQ

t )−1µQ
t + ei]

′ΣQ
t [(ΣQ

t )−1µQ
t + ei]

=
1

2
e′iΣ

Q
t ei + e′iµ

Q
t ∀ i ∈ {1, . . . , n} .

(25)

From (25) we have µQ
t = rt+1e −

1

2
vdiag(ΣQ

t ) and, therefore, we find the (no-arbitrage)

risk-neutral dynamics:

N

[
rt+1e−

1

2
vdiag (ΣQ

t ),ΣQ
t

]
, (26)

which is easily made Compound Autoregressive (Car or discrete-time affine)6 simply by

assuming, for instance, ΣQ
t = ΣQ and without making any assumption or imposing any

restriction on the risk-correction coefficients.

Proposition 3 : The historical dynamics Pt+1 is given, for any non-linear stochastic risk-

correction coefficients α1,t and α2,t, by Pt+1 = S(−α1,t,−α2,t)(Qt+1) and we have:

wt+1|wt
P∼ N (µt,Σt) ,

µt = (I + 2ΣQ
t α2,t)

−1(rt+1e−
1

2
vdiag(ΣQ

t ) − ΣQ
t α1,t) ,

Σt = ((ΣQ
t )−1 + 2α2,t)

−1 .

(27)

So, for any given R.N. conditionally Gaussian dynamics (possibly affine) and for any risk-

correction coefficients specifications i) the historical dynamics is still conditionally Gaussian,

thus providing to the asset pricing model a relevant computational tractability (i.e. a likeli-

hood function known exactly in closed form or by standard filtering techniques) and ii) any

conditional mean and any conditional variance-covariance matrix (both, non-linear functions

of the date t information) can be reached thanks to the non-linearities of the risk-correction

coefficients.

This asset pricing framework clearly provides an important generalization of the changes

6See Darolles, Gourieroux and Jasiak (2006) for details.
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of probability measures proposed by the continuous-time and discrete-time literature on

Quadratic-Gaussian (QG) or on Wishart Autoregressive (WAR) asset pricing models where,

for tractability reasons, the risk-correction coefficients are given by constant parameters or

are specified as deterministic function of time or as affine functions of the factor [see Buraschi,

Porchia and Trojani (2010), Cheng and Scaillet (2007), Dumas, Kurshev and Uppal (2009),

Gourieroux, Jasiak and Sufana (2009), Gourieroux and Sufana (2011) and Leippold and Wu

(2002)].

4.4. Calibrating the second-order GARCH option pricing model

4.4.1. The model

The purpose of this section is to consider a classical GARCH option pricing model with

leverage and exponential-affine SDF [see, among the others, Amin and Ng (1993), Engle

and Mustafa (1992), Duan (1995), Heston and Nandi (2000), and Christoffersen and Jacobs

(2004)] and to show, thanks to a calibration exercise, that the generalization obtained by

adopting an exponential-quadratic SDF may provide implied volatility smiles and skews

much closer to the observed ones [see, for instance, Pan (2002)].

In this first subsection we specify and present, following a Direct Modelling strategy, the

Second-Order GARCH Option Pricing Model and then, in the second subsection, we focus

on the calibration of the model.

Let us assume that the one-period geometric stock return wt+1 = yt+1 = log(St+1/St),

where St is the price at date t of the risky asset, is characterized, conditionally to y
t
, by the

following historical distribution (Pt+1, say):

yt+1 = µ0 + µ1 yt + σt+1εt+1 ,

σ2
t+1 = ω0 + ω1 (σt εt − ω2)

2 + ω3σ
2
t ,

εt+1|εt
P∼ N(0, 1) .

(28)
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that is, yt+1 follows a AR(1)-GARCH(1,1) process with leverage effect. From Proposi-

tion 2, we easily obtain that the no-arbitrage risk-neutral conditional distribution Qt+1 =

S(α1,t,α2,t)(Pt+1) of yt+1, conditionally to y
t
, is given by:

yt+1 = rt+1 −
1

2
(σQ

t+1)
2 + σQ

t+1 ξt+1 ,

(σQ
t+1)

2 =
σ2

t+1

(1 − 2σ2
t+1α2,t)

,

ξt+1 | ξt Q∼ N(0, 1) .

(29)

The price at date t of a European Call option with underlying stock price St, residual

maturity τ and moneyness strike κt = K
St

is given, assuming an exogenous short rate, by :

C(t, τ ; κt) = exp (−
∑τ

i=1 rt+i) E
Q
t [St+τ −K]+ ,

= exp (−
∑τ

i=1 rt+i) StE
Q
t [exp(yt+1 + . . .+ yt+τ ) − κt]

+ ,

≈ exp (−
∑τ

i=1 rt+i) St
1

S

S∑

s=1

[exp(y
(s)
t+1 + . . .+ y

(s)
t+τ ) − κt]

+ ,

(30)

where, for each s ∈ {1, . . . ,S}, the values (y
(s)
t+1, . . . , y

(s)
t+τ ) entering in the pricing formula are

simulated from the no-arbitrage risk-neutral conditional distribution (29).

4.4.2. A calibration exercise

The implementation of the Second-Order GARCH Option Pricing Model is based on the

following steps. First, we re-parameterize α2t is a such a way that the positiveness of the

risk-neutral conditional variance is satisfied. More precisely, we assume that:

α2t =
1

2 σ2
t+1

[1 − exp(ϕt)]

with ϕt = β0 + β1 yt + β2 ϕt−1 , β0, β1, β2 ∈ R ,

(31)

where the market price of variance risk α2t is made dependent not only on an affine func-
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tion of the factor yt, like classically adopted in the continuous-time and discrete-time asset

pricing literature [see Singleton (2006) and the references therein], but also on an extra term

introducing a dependence on its lagged value (β2 ϕt−1). This lag dependence, specific to

discrete-time models, turns out to provide a useful source of flexibility in order to replicate

implied volatility smiles and skews.

Second, on the basis of S&P 500 daily stock returns observed from July 1, 1962 to

December 31, 2001, we estimate the historical parameters θP = (µ0, µ1, ω0, ω1, ω2, ω3)
′ (say)

by the maximum likelihood method [see Table 1] and third, given this estimator θ̂P, we

calibrate the risk-neutral parameters θQ = (β0, β1, β2)
′ characterizing ϕt (i.e. α2t) in order to

study the larger set of implied volatility shapes that our model is able to provide, compared to

the one provided by the classical GARCH(1,1) case with α2t = 0 (our benchmark). Indeed,

in the latter case, for any given set of historical parameter estimates, the option pricing

formula does not show any free parameter that can be used to match a given cross-section

of options prices and, thus, the implied volatility curve (smile or smirk) turns out to be a

function of θ̂P only. Geometric stock returns are simulated from the risk-neutral dynamics

(29) adopting the empirical martingale simulation method of Duan and Simonato (1998),

we have assumed a constant 5% annual short rate, leading to a daily rate of 0.05
365

= 0.000137,

and S = 10000 simulations.

θP µ0 µ1 ω0 ω1 ω2 ω3

Estimate 0.00022 0.13899 -4.54E-07 0.07105 0.00405 0.92353
Standard error 0.00008 0.01051 1.43E-07 0.00198 0.00031 0.00226
Ln Likelihood 34182.84

Table 1: Maximum likelihood estimates of GARCH(1, 1) model (28) using S&P 500 daily stock returns

observed from July 1, 1962 to December 31, 2001 (9942 observations). Standard errors are calculated from

the outer product of the gradient at the optimum parameter values.

The Black and Scholes (1973) implied volatilities σIV,t = σIV,t(κt, τ ;α2t) (say) provided

by our calibration exercise for an European Call option with St = 1, κt ∈ (0.8, 1.2) and

τ = 30 days, are shown in Figures 1 to 3. Figure 1 shows σIV,t obtained by assuming in (31)
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ϕt = β0, with β0 ∈ {0,−0.25,−0.50,−0.75} (left panel) and ϕt = β0 +β1 yt, with β0 = −0.25

and β1 ∈ {−25, 0, 25} (right panel). The former case, characterized by a constant market

price of variance risk, is able to move the implied volatility smile of the classical GARCH

option pricing formula (the case α2t = 0, that will be always denoted by a solid blue line) at

different levels, with at-the-money annualized values ranging from 0.22 to 0.36. The latter

case, featuring a stochastic second-order risk-correction coefficient, given the presence in ϕt

of the geometric return, highlights that our option pricing formula is potentially able to

match implied volatility smiles and smirks with different degrees of curvature and steepness

at larger levels than the benchmark case α2t = 0.

Figure 1: Implied volatilities σIV,t = σIV,t(κt, τ ;α2t) when St = 1, κt ∈ (0.8, 1.2), τ = 30 days
and α2t = [1 − exp(ϕt)]/2 σ

2
t+1 with ϕt = β0 (left panel) and ϕt = β0 + β1 yt (right panel).

In Figure 2, exploiting the flexibility of the discrete-time setting, we generalize the spec-

ification of ϕt by introducing the lagged term β2 ϕt−1. We consider ϕt = β0 +β1 yt +β2 ϕt−1,

with β0 = 0, β2 ∈ {−0.75, 0, 0.50} and β1 = 20 in the left panel, while β1 = −20 in the

right panel. We assume β0 = 0 in order to provide a direct comparison with the bench-

mark (the case β0 6= 0 is shown in Figure 3). This example shows the usefulness that the
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discrete-time setting may provide in the specification of an asset pricing model: it opens the

way to a more general change of probability measure and a more flexible specification of the

associated stochastic market price (of variance) risk. Both features are shown to be relevant.

Indeed, in the left panel we see that, as far as β2 moves from −0.75 to 0.50, the degree of

steepness of σIV,t for out-of-the-money Call options reduces, thus modifying the volatility

smile into a volatility skew. The right panel shows that, when β1 moves from 20 to −20, the

same different values of β2 modify the entire curvature degree of the implied volatility smile.

Figure 3 shows that smiles and skews with different degrees of steepness and curvatures may

also be provided when levels of volatility, larger than the benchmark ones, are required.

Figure 2: Implied volatilities σIV,t = σIV,t(κt, τ ;α2t) when St = 1, κt ∈ (0.8, 1.2), τ = 30
days and α2t = [1 − exp(ϕt)]/2 σ

2
t+1 with ϕt = β0 + β1 yt + β2 ϕt−1 and β0 = 0. β1 = 20 (left

panel) and β1 = −20 (right panel).
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Figure 3: Implied volatilities σIV,t = σIV,t(κt, τ ;α2t) when St = 1, κt ∈ (0.8, 1.2), τ = 30
days and α2t = [1 − exp(ϕt)]/2 σ

2
t+1 with ϕt = β0 + β1 yt + β2 ϕt−1 and β0 = −0.25. β1 = 20

(left panel) and β1 = −20 (right panel).

4.5. Extension to conditionally Gaussian switching regime economies

It is important to highlight that the results presented in the previous sections can be gen-

eralized to the case of a Conditionally Gaussian Switching Regime (CGSR, say) Economy,

namely a security market model in which the dynamics of the quantitative factor is described

by a conditionally Gaussian regime-switching model with a conditional mean and conditional

variance featuring a general dependence on contemporaneous and past factor values as well

as on the regime-indicator function. More precisely, it is possible to determine, first, the

conditional Second-Order Esscher Transform of a CGSR model and then to consider the no-

arbitrage pricing within CGSR economies with an exponential-quadratic SDF, which prices

not only mean-based and variance-based sources of risk, but also regime-shift risk. We can

also focus on a CGSR economy in which the risk-neutral conditional mean and conditional

variance of the factor are specified as an additive function of the contemporaneous and past

regimes, in order to guarantee a Car Q-dynamics able to provide tractable pricing formulas
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[see Monfort and Pegoraro (2010) for details].

5. Conclusions and further developments

In this paper we propose, working with discrete-time no-arbitrage asset pricing models, to

widen the bridge between the historical and the risk-neutral factor distribution, while keep-

ing, respectively, flexible and tractable the modelling of both dynamics. The key tools behind

this more general change of probability measure are the Second-Order Esscher Transform or,

equivalently, the Exponential-Quadratic Stochastic Discount Factor, specified by first-order

and second-order stochastic risk-sensitivity coefficients.

We show the large flexibility of this new approach in the case of multivariate conditionally

Gaussian dynamics and, in order to testify the usefulness of the methodology, we define

and calibrate the Second-Order GARCH Option Pricing Model and we show its ability to

provide implied volatility curves characterized by several degrees of steepness (smirks) and

curvature (smiles). In other words, we highlight how the exponential-quadratic specification

of the SDF is important in generating free risk-neutral parameters (associated to the market

price of variance risk) able to match the observed variability of the cross-section of option

prices.

Our approach can be coupled with a Back Modelling strategy assuming a Car risk-neutral

factor dynamics and then obtaining an historical dynamics by means of a Second-Order

Esscher Transform with risk-sensitivity coefficients specified as any functions of the state

vector. In this case we have at the same time explicit or quasi explicit pricing formulas

for several derivative assets and a very large set of possible historical dynamics that remain

computationally tractable.

Although we illustrate our approach using security market models, our results are much

more general than the RNVR or LRNVR ones, since they could be applied in many other

asset pricing contexts like finance and macro-finance yield curve models, credit risk models,
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longevity risk and exchange rate models. We leave these developments to future research.
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Appendix: Computation of second-order Esscher trans-

forms

Computation of the second-order Esscher transform of a Gaussian distribu-

tion

The proofs of the examples presented in Section 2 are based on the following result. If we

consider the p.d.f. of a n-dimensional Gaussian random variable N(µ,Σ):

f(y) =
1

(2π)n/2
√

det Σ
exp

[
−1

2
(y − µ)′Σ−1(y − µ)

]
,

∝ exp

[
−1

2
y′Σ−1y + µ′Σ−1y

] (A.1)

then, from Definition 2 we have :

g(y; θ1, θ2) ∝ exp

[
−1

2
y′Σ−1y + µ′Σ−1y + θ1y + y′θ2y

]
,

∝ exp

[
−1

2
y′

(
Σ−1 − 2θ2

)
y +

(
Σ−1µ+ θ1

)′
y

]
,

∝ exp

[
−1

2
y′

(
Σ−1 − 2θ2

)
y +

(
Σ−1µ+ θ1

)′ (
Σ−1 − 2θ2

)−1 (
Σ−1 − 2θ2

)
y

]
,

(A.2)

and, therefore, g(y; θ1, θ2) is the p.d.f. of the n-dimensional Gaussian random variable

N
[
(Σ−1 − 2θ2)

−1
(Σ−1µ+ θ1) , (Σ

−1 − 2θ2)
−1

]
(A.3)

proving relation (5) in Section 2.3, and relation (4) in Section 2.2 when n = 1.
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Computation of the second-order Laplace transform of a Gaussian distribution

From relations (2) and (5) we see that the Second-Order Laplace Transform of the Gaussian

random vector y ∼ N(µ,Σ) is given by:

ϕS(θ1, θ2) =

∫

Rn

f(y) exp(θ
′

1y + y′θ2y)dy =
f(y) exp(θ′1y + y′θ2y)

g(y; θ1, θ2)

= det (I − 2Σθ2)
−

1

2 exp

[
−1

2
µ′Σ−1µ+

1

2
(Σ−1µ+ θ1)

′(Σ−1 − 2θ2)
−1(Σ−1µ+ θ1)

]
.

(A.4)

If we consider the case of a scalar (n = 1) Gaussian random variable N(µ, σ2), the Second-

Order Gaussian Laplace Transform (A.4) takes the following particular form:

ϕS(θ1, θ2) =

∫

R

f(y) exp(θ1y + θ2y
2)dy

= (1 − 2σ2θ2)
−

1

2 exp

[
−1

2

µ2

σ2
+

1

2

(
σ2

1 − 2σ2θ2

) ( µ

σ2
+ θ1

)2
]
.

(A.5)

Computation of the second-order Esscher transform of a mixture of Gaussian

distributions

Denoting by n(y;µj,Σj) the p.d.f. of the Gaussian random vector y ∼ N(µj,Σj), we want

to find the Second-Order Esscher Transform of the density:

J∑

j=1

λj n(y;µj,Σj) , (A.6)
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which is given, following Definition 2, by the family of probability distributions with p.d.f.:

g(y; θ1, θ2) =

J∑

j=1

λj exp(θ′1y + y′ θ2 y)n(y;µj,Σj)

J∑

j=1

λj ϕS,j(θ1, θ2)

, (A.7)

where ϕS,j(θ1, θ2) is the Second-Order Laplace Transform of y ∼ N(µj ,Σj) given by (A.4)

with µ = µj and Σ = Σj . From the results proved above we obtain:

g(y; θ1, θ2) =
J∑

j=1

λ∗j n
[
y;

(
Σ−1

j − 2θ2
)−1 (

Σ−1
j µj + θ1

)
,
(
Σ−1

j − 2θ2
)−1

]
,

with λ∗j =
λj ϕS,j(θ1, θ2)

J∑

j=1

λj ϕS,j(θ1, θ2)

(A.8)

proving relation (6) of Section 2.4.
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