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Abstract

This paper investigates the strategic effects of case preparation in litigation. Specif-
ically, it shows how the pretrial efforts incurred by one party may alter its adversary’s
incentives to settle. We build a sequential game with one-sided asymmetric information
where the informed party first decides to invest in case preparation, and the uninformed
party then makes a settlement offer. Overinvestment, or bluff, always prevails in equi-
librium: with positive probability, plaintiffs with weak cases take a chance on investing,
and regret it in case of trial. Furthermore, due to the endogenous investment decision,
the probability of trial may (locally) decrease with case strength. Overinvestment gen-
erates inefficient preparation costs, but may trigger more settlements, thereby reducing
trial costs.
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JEL Classification: K410

1 Introduction

The vast majority of tort disputes never reach a trial verdict. Litigants, indeed, have mutual
incentives to save on trial costs by settling out of court. Moreover, a settlement shortens
the dispute and might help to keep it confidential.1 For example, out of the 98,786 tort
cases that were terminated in U.S. district courts during fiscal years 2002 and 2003, 1,647 or
2% were decided by a bench or jury trial.2 Data about settlement are most of the time not
available but it is commonly believed that cases that go to trial involve larger damages.3

∗We are grateful to seminar participants at the 2007 CESifo Area Conference on Applied Microeconomics,
the 22nd Meeting of the European Economic Association in Budapest, the 2007 ASSET Meeting in Padova,
as well as to Philippe Février and Thibaud Vergé for insightful comments.
†CREST (LEI), 15 bd Gabriel Péri 92245 Malakoff. Email : chone@ensae.fr
‡CREST (LEI), 15 bd Gabriel Péri 92245 Malakoff. Email : laurent.linnemer@ensae.fr (contact author)
1See Daughety and Reinganum (1999) for the issue of confidentiality.
2Source: Bureau of Justice Statistics Bulletin, August 2005, NCJ 208713.
3See Black, Silver, Hyman, and Sage (2005) and Chandra, Shantanu, and Seabury (2005). Kaplan,

Sadka, and Silva-Mendez (2008) use a data set from labor tribunals in Mexico that provides information
about settled cases as well as tried cases. They find that about 70% of lawsuits are settled, 15% dropped
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The amount at stake in a settlement dispute can be very important: in March 2006 the
Canadian firm Research In Motion who manufactures the Blackberry email device agreed
to pay a $612.5m settlement amount to end a patent dispute with NTP Inc. a little known
Virginia firm.4

In this article, we examine how the incentives to settle are modified when litigants
can enhance the strength of their case by investing in case preparation during the pretrial
phase. We assume that pretrial efforts incurred by the parties can change the probability
that the defendant will be found liable at trial and/or the damage awarded to the plaintiff
should liability be established. The seminal contributions in the field, Bebchuk (1984)
and Reinganum and Wilde (1986), assume that the expected award is fixed, but known
to one party only. The former paper considers a screening game: the uninformed party
(the defendant, say) makes a settlement offer, which is rejected by plaintiffs with strong
cases. The latter paper studies a signaling game: the informed party makes an offer which
positively depends on the strength of his case, and the defendant refuses to pay a larger
settlement amount with a higher probability.5

With few exceptions, the subsequent literature has treated the expected award in court
as exogenous. Litigants, however, do invest in case preparation with the purpose of improv-
ing their position at trial and, consequently, at the negotiation table. During the pretrial
phase, the parties take various actions: getting additional evidence, taking thorough initial
interviews and depositions, obtaining statements from witnesses, issuing interrogatories,
selecting expert witnesses, etc. In practice, the precise form of pretrial preparation depends
on the legal procedure in force.

To show how the investment in case preparation of one party can affect its adversary’s
incentives to settle, we build a sequential game, where the informed party first decides
to invest, or not, in case preparation, and the uninformed litigant, after observing this
decision, makes a take-it-or-leave-it settlement offer.6 We assume that case preparation
efforts entail a sunk cost, which is incurred during the pretrial phase, and that they are
effective in raising or reducing the expected award (depending on the party who invests).
Conditionally on the investment decision, litigants play a screening game with a continuum
of types à la Bebchuk, leading to settlement or trial.7 The endogenous investment decision,
however, introduces a signaling dimension. The informed party can potentially use the
investment to manipulate the other side’s beliefs and alter her incentives to settle.

The observability assumption is critical as it is the basis of the signaling mechanism.
Admittedly, a party may not observe the exact amount of resources devoted by her adver-
sary to prepare his case. At the very least, however, the counsel chosen by a litigant to

and 15% go to trial. They find, however, that plaintiffs that go to trial receive significantly lower final
payments. They explain this difference by a selection effect as workers who exaggerate their claims settle
less often, and may be punished in terms of final-payment amounts.

4The settlement, which was not easy to reach, ended four years of legal dispute in the U.S. between the
two companies. Maybe the largest amounts that make newspapers front pages correspond to drug related
civil action trials but they do not necessarily lead to the largest amounts per plaintiff.

5See ? and Daughety and Reinganum (2005) for comprehensive surveys.
6For a model with alternative offers, see Spier (1992).
7The informational asymmetry is one-sided. For models where both parties have private information,

see Schweizer (1989) and Daughety and Reinganum (1994).
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assist him during the pretrial phase is known to the other party as counsels have many
opportunities to interact during this phase. The counsel choice is a good indicator of case
preparation expenses. Lawyer’s fees vary substantially from one lawyer to another accord-
ing to experience and reputation. For example, the Laffey Matrix8 allows an experienced
federal court litigator to charge twice as much as a junior associate. Hiring a prominent
law firm rather than an ordinary attorney is a major strategic decision, and this choice is
public information before the settlement offers are made.9

To present our findings, we suppose, for convenience, that the informed party is an in-
jured plaintiff, and the uninformed party a potentially negligent defendant. Case prepara-
tion raises the value of the claim, but entails a sunk cost. We assume that, under symmetric
information, only plaintiffs with strong cases do invest. For low expected damage types, the
costs of case preparation exceed its return. In other words, the case preparation technology
is tailored for plaintiffs with large damages.

Under asymmetric information, low-damage plaintiffs mimic plaintiffs with more serious
cases in the hope of a larger settlement offer. Such an incentive is well understood by the
defendant and, when total trial costs are not too large, a complex equilibrium pattern
stands out. Plaintiffs with strong cases, who invest in case preparation under symmetric
information, maintain this choice under asymmetric information. Plaintiffs with weak cases,
who do not invest under symmetric information, however, are made indifferent between
investing or not, and randomize between both options. When the defendant observes that
the plaintiff has invested, she herself randomizes between a high and a low settlement offer.
When she observes no investment, she makes a deterministic low offer. Plaintiffs with
strong cases reject all equilibrium settlement offers and proceed to trial. Plaintiffs with
weak cases can be further distinguished with respect to their settlement strategy. Plaintiffs
with very weak cases accept all equilibrium offers (whether they have invested or not), and
earn an informational rent. Intermediate types settle if and only if they have invested and
the defendant offers a large amount. That is, these types settle more often out of court if
they invest than if they do not.

Overinvestment in case preparation is generic, and its extent is constant across equi-
libria. Investment by weak plaintiffs is tantamount to bluff : a weak plaintiff who invests
knows that he will regret it, should he receive the low offer and go to court. Plaintiffs with
intermediate types go to court with positive probability, and indeed regret to have invested
when a trial takes place. Strong and very weak plaintiffs, on the contrary, never regret their
decision.

Furthermore, our model predicts that the probability of trial can decrease with the
strength of the case. This is in sharp contrast with both Bebchuk and Reinganum and Wilde

8A list of hourly rates (adapted each year to take into account inflation) for attorneys of varying ex-
perience levels prepared by the Civil Division of the United States Attorney’s Office for the District of
Columbia. This list is intended to be used in cases in which a fee-shifting statute permits the prevailing
party to recover reasonable attorney’s fees.

9Garoupa and Gomez-Pomar (2008) offer a number of explanations of why corporate clients acting as
plaintiffs prefer to hire large law firms and resort to hourly fees arrangements. Our results may provide an
extra rationale for such a policy: the reason why plaintiffs are ready to incur expensive attorney fees is that
they use these sunk costs to signal the strength of their claims.
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models, which predict that the probability of trial increases with the expected damages.
Indeed, the more demanding the plaintiff, the less likely settlement occurs, otherwise all
types of plaintiff would demand more. In our model, this logic fails because of a selection
effect : the larger their expected damage, the larger their probability of investment and, in
turn, the larger their probability of settlement. This strategic effect reduces trial costs, and
may outweigh the socially inefficient increase in preparation sunk costs.

Finally, we examine the robustness of our results in a game where the investment in
case preparation is continuous. As in the binary model, the probability of trial is driven
by two forces that play in opposite directions: the selection effect counters the usual effect,
tending to make the plaintiff with the strongest case settle more often than weaker types.
We highlight the interplay of these opposite forces, but do not know whether the selection
effect may dominate, as is the case in the binary model. We also show that the probability
of bluff (an agent choosing the complete information effort of the highest type) is positive
and constant across equilibria as in the binary game. We stress, however, a major difference
between the two environments: All plaintiffs choosing the same effort level (full pooling)
can never be an equilibrium when investment is continuous, while such an outcome occurs
under a relatively mild condition in the binary game. Our analysis also shows that sepa-
ration of types cannot occur in equilibrium and suggests that extensive and complicated
randomization from both parties is necessary to sustain an equilibrium of the continuous
game.

An important pretrial topic is discovery. Following Shavell (1989), the interaction be-
tween mandatory or voluntary information disclosure and settlement strategies has been
thoroughly explored. Depending on the model, discovery completely10 or partially 11 re-
veals the type of the plaintiff. In any case, as is widely recognized, discovery is costly,
and litigants have incentives to settle their dispute before discovery costs are sunk. In this
respect, discovery and trial share common features; in particular, both are costly proceed-
ings that unveil information. In this paper, we abstract away from the strategic effects of
discovery that are outlined below. Our framework, however, accommodates the presence
of a discovery phase, provided that expected payoffs depend on pre-existing heterogeneity
and case preparation efforts only.

Sobel (1989), Cooter and Rubinfeld (1994), Hay (1995), Schrag (1999), and Schwartz
and Wickelgren (2008) have investigated settlement prior to discovery. Some of these papers
consider litigation efforts, thereby endogenizing case strength. None of them, however,
allows for pre-discovery case preparation, which is our focus here.

Hay (1995) considers pre-discovery settlement in a model with two types, but assumes
that case preparation occurs when all exogenous heterogeneity concerning case strength has
vanished. At the final stage of his game, plaintiffs differ only through their discovery effort,
which is not observed by the defendant: there is hidden action, but symmetric information.
If efforts were observed, intense case preparation would induce generous settlement offers.
Since effort is unobserved, the plaintiff is tempted to shirk and, in equilibrium, both players

10See for instance Shavell (1989), Sobel (1989), Hay (1995), Farmer and Pecorino (2005), Schwartz and
Wickelgren (2008). See also Daughety and Reinganum (2008) for a tradeoff between signaling and disclosure.

11Mnookin and Wilson (1998).
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resort to mixed strategies. In contrast to Hay’s framework, investment occurs in the present
paper prior to discovery, and is observed by the defendant.

Schrag (1999) investigates the effects of regulating discovery efforts in a model with
two types. If they fail to settle early, the litigants engage in simultaneous discovery efforts,
the payoffs of which are modeled through reduced-form profit functions. Case strength is
endogenous, but efforts are made after the strategic settlement phase under consideration.
The settlement decisions alter the beliefs of the uninformed party and, in turn, her discovery
efforts, which is anticipated at the time of the settlement bargaining. Schrag finds that the
prospect of future discovery can undermine the incentives to settle early.

Schwartz and Wickelgren (2008) study the incentives of plaintiffs with negative expected
value cases to file a suit. The problem of NEV cases has first been tackled in the seminal
contributions of Nalebuff (1987) and Bebchuk (1988). Schwartz and Wickelgren examine
pre-discovery settlement bargaining in a model à la Bebchuk. As in Schrag (1999), the
beliefs of the uninformed party are revised following the early settlement bargaining. In
contrast, in the present article, the Bayesian revision occurs after case preparation, which
is the source of the bluffing strategy. In other words, we concentrate on case preparation
investment as well as settlement offers made before any activities that uncover and spread
information.

A methodological contribution of this article is the characterization, in a signaling game
with a continuum of types, of semi-pooling equilibria where both sides play in mixed strate-
gies. The informed party, playing first, makes a binary decision (preparing or not), and
the uninformed party replies with a continuous strategic variable (the settlement offer).
Despite of the multiplicity of equilibria, we are able to show that important economic fea-
tures (in particular, the extent of overinvestment) are constant across equilibria. We also
demonstrate that the equilibria involve non-degenerated mixed strategies of both players.
As already said, the main modeling difference with Hay (1995) is the presence of private
information. Another difference is the timing of the game: sequential in the present paper,
simultaneous in Hay. In contrast to the signaling game of Reinganum and Wilde (1986),
both players, in our framework, resort to mixed strategies. Specifically, in their paper, the
uninformed defendant randomizes between accepting or rejecting the settlement offer made
by the informed plaintiff, while, in our model, no randomization takes place once a settle-
ment offer is made as it is the informed party who accepts or rejects the offer. Here, the
defendant randomizes between a generous and a conservative offer when the plaintiff opts
for case preparation which induces the intermediate plaintiff types to accept or reject the
offer. As to the plaintiff, he randomizes between investing, or not, in case preparation, using
a probability that is not necessarily monotonic in case strength. Yet our model predicts
a simple average pattern: above a critical threshold for case strength, all types invest and
proceed to trial. Below the threshold, the average probability of investment depends on the
fundamentals of the game (sunk and trial costs and effectiveness of case preparation) in a
simple manner.

The paper is organized as follows. Section 2 presents the model. Section 3 details
the strategies of the parties and presents some preliminary results. Section 4 characterizes
the unique equilibrium when trial costs are relatively large, while section 5 deals with
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the relatively low trial cost case. Section 6 presents comparative statics and qualitative
properties of the equilibria. Section 7 investigates the game with continuous investment.
Section 8 suggests alternative interpretations of the model and avenues for future research.
Most proofs are in a technical appendix.

2 The model

We consider a litigation framework with one-sided informational asymmetry. The expected
award, also referred to as “case strength”, is the plaintiff’s private information. The defen-
dant only knows the distribution of case strength. The plaintiff can invest in preparation to
enhance his case. We posit a multiplicative effect: the investment multiplies the expected
award by a constant greater than one.12 Both litigants are risk neutral.

2.1 The litigation game

The extensive form of the game is illustrated in Figure 1. Nature determines the plaintiff’s
type, noted x, according to a distribution F with positive density f on [a, b]. The plaintiff
decides to invest in case preparation, which we note e = H, or to exert the basic level of
effort, e = L. The investment involves a sunk (pretrial) cost c > 0. The defendant, after
observing the investment decision, makes a take-it-or-leave-it settlement offer. The plaintiff
either accepts or refuses the offer. In the latter case, the case proceeds to either discovery
or trial. The plaintiff’s expected gain is µx if he has invested, x otherwise. The parameter
µ > 1 is common knowledge. In other words, the return of case preparation is a higher
expected award in the subsequent litigation.

In addition to the sunk cost, the initial investment may alter the plaintiff’s trial costs.
The choice of a reputable attorney in the initial phase may imply larger trial cost as it might
be costly to switch to a less expensive lawyer who would have to start from scratch. The
plaintiff’s litigation costs are noted tPH ≥ tPL ≥ 0. For simplicity, we assume here that the
plaintiff’s case preparation does not impact the defendant’s litigation cost, that we note
tD.13 Total trial costs in each situation are denoted TL = tPL + tD and TH = tPH + tD.
Negative expected claims are assumed away: the expected award in court is greater than
the trial’s costs for both technologies, even for the weakest case: a > tPL and µa > tPH + c.

Under symmetric information, litigants never go to court. The defendant observes x,
the case strength, as well as the plaintiff’s investment decision. Therefore, she holds all the
necessary information to make personalized offers which are accepted. Formally, she offers
x − tPL after e = L, and µx − tPH after e = H. The plaintiff accepts such an amount (but
would refuse any smaller one) because this is exactly the expected reward he would have
in case of a trial. Anticipating these settlement amounts, the plaintiff invests if and only if

12Such a multiplicative structure captures the specific case where private litigation expenditures influence
the plaintiff’s probability of winning but the damages conditional on winning are fixed.

13In an earlier draft Choné and Linnemer (2008), we allowed for the possibility that the plaintiff’s
investment makes the life of the opposite party harder, forcing her to incur higher litigation costs. The
qualitative results are the same in this more general framework.
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Nature
chooses x

x ∈ [a, b]

The plaintiff
strengthens his
case or not

e ∈ {H, L}

The defendant
offers a settle-
ment amount

se ≥ 0, e ∈ {H, L}

The plaintiff ac-
cepts or refuses

A or R

Trial if no
settlement

Payoffs

Figure 1: Timeline of the game

µx − tPH − c ≥ x − tPL . Let x̃ be the type of the plaintiff who is indifferent, under perfect
information, between both technologies:

x̃ =
tPH − tPL + c

µ− 1
.

We refer to the plaintiff x̃ as the marginal type. Investment is optimal for plaintiffs with
strong cases (x > x̃), while it is not for weak cases (x < x̃). Throughout, we assume that
no technology is superior to the other for all types of plaintiff. Formally:

Assumption 1. The marginal type is interior: a < x̃ < b.

a bx̃

x̃− tPL

x

Plaintiff’s net
expected gain

x− tPL
if e = Lµx− tPH − c

if e = H

Figure 2: The optimal technology choices and the marginal type x̃
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In Figure 2, the bold line represents the plaintiff’s symmetric information gain as a
function of his type x. Under asymmetric information, this line corresponds to the minimum
gain the plaintiff can secure by going to court. This gain is the plaintiff’s reservation
utility, which is type-dependent. We also assume that a plaintiff who has invested in case
preparation does not want to switch back to the basic technology.

Assumption 2. Once the sunk cost c has been incurred, a plaintiff has no incentives to
give up the return of case preparation. Formally: a− tPL < µa− tPH .

Combined with Assumption 1, Assumption 2 implies, for the weakest case: µa−tPH−c <
a− tPL < µa− tPH , which entails a positive lower bound for the sunk cost: c > (µa− tPH)−
(a− tPL ) > 0. Notice that assumption 2 is satisfied when tPL = tPH .

2.2 The one-technology benchmarks

Throughout, we note {H} and {L} the situations where only one technology is available,
and {HL} the situation where the plaintiff can choose his preferred technology. Following
Bebchuk, we first examine the benchmark cases {H} and {L}.

A settlement offer partitions the population of plaintiffs into two groups. In case {L},
the plaintiff of type x accepts a settlement offer s if and only if x ≤ s+tPL . The corresponding
threshold in case {H} is (s+ tPH)/µ. It is convenient to parameterize settlement offers with
the type of the indifferent plaintiff, rather than with the settlement amount itself. The offer
leaving plaintiff x indifferent yields the following utility to plaintiff y:

v{L}(y;x) = max(y − tPL , x− tPL ) and v{H}(y;x) = max(µy − tPH − c, µx− tPH − c), (1)

and the following profit to the defendant: π{L}(x) = − (x− TL)F (x) −
∫ b
x yf(y)dy − tD

and π{H} (x) = µ
[
−
(
x− TH

µ

)
F (x)−

∫ b
x yf(y)dy

]
− tD. The latter formulae express the

defendant’s tradeoff between rent extraction and trial cost savings. Throughout the paper,
we maintain the following assumption.

Assumption 3. The distribution of case strength is strictly log-concave.

Assumption 3 amounts to τ = F/f being increasing on [a, b] and guarantees that the
profit functions π{L} and π{H} attain their maximum at a unique value.14 We denote the
optimal offers by x∗L and x∗H , and assume they are interior (x∗H , x

∗
L ∈ (a, b)). We have:

τ(x∗H) = TH/µ and τ(x∗L) = TL.

If case strength is uniformly distributed on [a, b], then τ(x) = x − a, x∗L = a + TL, x∗H =
a + TH/µ. By assumption, TL ≤ TH , but TH/µ could be either larger or smaller than TL
and there is a priori no restriction on the ordering of x∗H and x∗L.

14In the three situations {H}, {L} and {HL}, existence results only require τ to be nondecreasing, but
uniqueness results depend on τ increasing. In particular, the strict monotonicity guarantees the uniqueness
of x∗H and x∗L.
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In such a litigation environment, total welfare equals the opposite of litigation costs,
and is not affected by transfers from one party to another.15 The expected litigation costs
in equilibrium when only one technology is available are given by

C∗{H} = c+ (1− F (x∗H))TH and C∗{L} = (1− F (x∗L))TL. (2)

The comparison of the expected trial costs in the situations {H} and {L} involves a direct
cost effect and a strategic effect. Formally,

C∗{H} − C∗{L} = c+ (1− F (x∗L))(TH − TL)− (F (x∗H)− F (x∗L))TH .

Since c ≥ 0 and TH ≥ TL, the sum of the first two terms is positive, and tends to make C∗{H}
higher than C∗{L} (direct cost effect). The last term reflects the change in the incentives to
settle. If TH/µ ≤ TL, trial occurs less often in {L} than in {H}, so both effects play in the
same direction. This happens, in particular, when TL = TH . On the other hand, if TH/µ
is larger than TL, the strategic effect tends to make C∗{H} lower than C∗{L}. When x∗H tends
to b, the strategic effect may dominate the direct cost effect.

3 Notations and Preliminary results

We now examine the incentives to invest and to settle in the situation {HL} where both
technologies are available. As will shortly become clear, we must consider mixed strategies
of the defendant. Parameterizing settlement offers with the type of the indifferent plaintiff
as explained above, the most general defendant’s strategy is represented by a pair (PH , PL)
of probability measures on the interval [a, b]. Facing e = H (resp. e = L), the defendant
randomizes across offers µx− tPH (resp. x− tPL ), where x is drawn in [a, b] according to the
distribution PH (resp. PL).

The defendant’s strategy and the plaintiff’s payoffs: Facing a defendant’s
strategy (PH , PL), a plaintiff of type y gets the following expected payoffs:

vH(y) =
∫ b

a
v{H}(y;x)dPH(x) and vL(y) =

∫ b

a
v{L}(y;x)dPL(x), (3)

where the base utility functions v{H}(.;x) and v{L}(.;x) are defined in (1). In Appendix,
Lemma A.1 shows that the functions vL and vH are nondecreasing and convex and that
their derivatives are linked to the probability of trial (conditional on effort) by: PH(x ≤
y) = v′H(y)/µ and PL(x ≤ y) = v′L(y). Furthermore, Lemma A.1 shows that we can
interchangeably use the probability measures PH and PL or the expected payoff functions
vH(.) and vL(.) of the plaintiff to represent the defendant’s strategy. This result plays
a critical role in the following analysis, where the geometric properties of vH and vL are
extensively used.

15The focus of the paper is on the settlement issue. Therefore we do not take into account the adminis-
trative costs of a trial nor the deterrence effects that trial and settlement cost might have.
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The plaintiff’s strategy and the defendant’s payoffs: A plaintiff’s behavioral
strategy is represented by a map σ : [a, b]→ [0, 1], which specifies the probability σ(x) that
the plaintiff of type x invests in case preparation. After observing the plaintiff’s decision
e ∈ {H,L}, the defendant revises her beliefs about the distribution of case strength. For
a given plaintiff’s strategy σ, we note fe and Fe, the density and c.d.f. of the defendant’s
posterior distributions. Assuming that both technologies are used in equilibrium, the revised
densities are given by the Bayes’ rule

fH(x) =
σ(x)f(x)

∫ b
a σ(t)f(t)dt

and fL(x) =
[1− σ(x)] f(x)

∫ b
a [1− σ(t)] f(t)dt

. (4)

Consequently, conditional on e, an offer x yields the following expected revenues

πH(x) = µ

[
−
(
x− TH

µ

)
FH (x)−

∫ b

x
tfH(t)dt

]
− tD (5)

πL(x) = − (x− TL)FL (x)−
∫ b

x
tfL(t)dt− tD (6)

to the defendant after e = H or e = L. The difference between the above expressions of πe
and the expression of π{e} used in the one-technology worlds of Section 2.2 is the underlying
distributions of heterogeneity: the profits πe refer to the posterior distributions, while the
prior distributions of case strength are used in π{e}.

If the defendant randomizes across offers according to the probability distribution Pe,
her payoff is

Πe =
∫ b

a
πe(x)dPe(x).

Lemma B.1 in the technical appendix shows how the defendant’s profits can be expressed
in terms of the utility she leaves to the plaintiff.

A perfect Bayesian equilibrium of the game is a function σ∗(.) and two probability
measures P ∗H and P ∗L on [a, b] such that (i) given P ∗H and P ∗L, σ

∗(x) maximizes the expected
payoff of type x, for all x in [a, b]; (ii) given σ∗, P ∗e maximizes the defendant expected payoff
after she has observed e, for e = H,L; (iii) beliefs are updated according to Bayes’ rule (4).

Throughout, we assume that the the plaintiff’s strategy σ has a left and a right limit at
any point x, which are noted σ(x−) and σ(x+) respectively.16 It follows that the posterior
densities fH and fL have left and right limits at any point x and that the defendant’s payoff
function πH and πL have a left and a right derivative at any point x; the right derivatives
are given by π′H(x+)/µ = −FH(x) + TH

µ fH(x+) and π′L(x+) = −FL(x) + TLfL(x+) (the
left derivatives are given by analog formulae). It is useful to observe that π′H(x) and π′L(x)
are respectively equal, up to a positive multiplicative constant, to σ(x)f(x)−

∫ x
a σdF and

(1− σ(x))f(x)−
∫ x
a (1− σ)dF .

16 More precisely, we assume that σ is a “function of bounded variation”, i.e. that it can be written as
the difference between two nondecreasing functions. Such a function everywhere admits a right and a left
limit, which coincide except possibly at countably many points. See Ziemer (1989).
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General properties of equilibria:
The support of a mixed strategy is the set of pure strategies to which a positive probabil-

ity is assigned. For an offer to be in the support, a necessary condition is that it maximizes
the defendant expected payoff. Whenever the maximum of her payoff is attained at many
points, she can randomize across several of the corresponding offers. Formally:

supp P ∗e ⊂ argmax πe,

where πe, given by (5) or (6), uses the updated beliefs. If, for e = H or L, the defendant’s
payoff function attains its maximum at a unique point, then she makes the corresponding
offer with probability 1: the support of distribution Pe is thus a singleton, or, equivalently,
Pe is a mass point. (As seen above, this happens if all x opt for the same technology.)

We now show that the investment decision of plaintiffs with strong cases is never dis-
torted.

Lemma 1. In equilibrium, plaintiffs with strong cases invest in case preparation.

Proof. The result, obviously, holds when the overall probability that e = H,
∫ b
a σdF , is 1.

We concentrate, therefore, on the case where the overall probability of observing the basic
technology,

∫ b
a (1− σ)dF , is positive, and prove that, under this assumption, the defendant

makes no offer greater than x̃− tPL after observing e = L, that is, vL(x̃) = x̃− tPL .
To this aim, we use a standard unraveling argument. Suppose that vL(x̃) > x̃ − tPL =

µx̃ − tPH − c. Since vL(b) = b − tPL < µb − tPH − c, the curve vL must cross the segment
µx− tPH − c on (x̃, b]. They only cross once since the segment has slope µ > 1 and vL has
slope no greater than 1. Let x0 be the unique intersection point. For x > x0, we have:
vH > vL, so the plaintiff chooses e = H with probability σ = 1. The defendant therefore
knows that all the plaintiffs who choose e = L necessarily have: x ≤ x0. Therefore she
could reduce the utility vL(.) by the constant amount z = vL(x0) − [x0 − tPL ] > 0. Such a
change would increase her payoff by z

∫ x0

a (1− σ)dF , which is positive by assumption. We
conclude that we must have: vL(x̃) = x̃− tPL , which is equivalent to saying that the support
of PL is a subset of [a, x̃] or that the defendant, after observing e = L, does not make any
offer greater than x̃− tPL with positive probability.

It follows that, for x > x̃, we have: vL(x) = x− tPL < µx− tPH − c, so plaintiff x chooses
to invest.

4 Equilibria when trial costs are large

This section is devoted to the case x̃ < x∗H or, equivalently, τ(x̃) < TH/µ. This assump-
tion expresses that, in the benchmark situation {H}, the marginal plaintiff x̃ settles in
equilibrium. The next proposition shows that, under this assumption, the only possible
equilibrium configuration when both technologies are available is the same as in {H}.

11



Proposition 1. Assume x̃ < x∗H . Then, in equilibrium, any plaintiff invests in case prepa-
ration: σ∗ = 1 on [a, b]. After observing e = H, the defendant offers µx∗H − tPH to settle the
case.

Proof. First, we prove the existence of out-of-equilibrium beliefs that are consistent with
this configuration. Suppose that, after she observes e = L, the defendant believes that
the deviation comes from plaintiff a, and, accordingly, offers only a − tPL to settle. It
follows that a plaintiff of type x receives utility x− tPL if he does not invest, while he gets
v{H}(x;x∗H) > x− tPL if he invests (see Figure 3). In turn, any plaintiff invests and, as seen
in Section 2.2, it is indeed optimal for the defendant to offer µx∗H − tPH , leaving plaintiff x∗H
indifferent between accepting or rejecting the offer.

Second, we check that the above configuration is the only possible one in equilibrium.
The proof proceeds by contradiction. Assuming that the investment probability Pr(e = H)
is smaller than 1, we use the convexity of the functions vH and vL to show that there must
exist x1 ∈ (a, x̃] such that, after observing e = H, the defendant makes the offer µx1 − tPH
with positive probability, and we show that this is not possible given the assumption x̃ < x∗H .
The detailed proof is presented in Appendix C.

a bx̃
x

Plaintiff expected gain

x− tPL

µx− tPH − c

v∗H(x)

x∗H

µx∗
H − tPH − c

Figure 3: Equilibrium gains when x∗H > x̃

According to Proposition 1, the plaintiff’s strategy, as well as the defendant’s strategy
after she has observed e = H, are unique in equilibrium. Any distribution PL such that
vL ≤ v∗H sustains the equilibrium. But the equilibrium configuration is unique, and is the
same as in {H}. The uniqueness result is the heart of Proposition 1.

12



The intuition behind this result is fairly simple. When TH/µ is large enough, the trial
is relatively costly to at least one party and the plaintiff and/or the defendant are eager to
settle. Therefore a relatively high settlement offer is made after e = H which attracts all
types of plaintiff.

The absence of the basic technology in equilibrium can harm some types of plaintiff.
Indeed, assume that x∗L is larger than x∗H and such that x∗L− tPL is larger than µx∗H − tPH − c
(more precisely, we are concerned by the case: x̃ < x∗H < x∗H + (µ− 1)(x∗H − x̃) < x∗L < b).
Then all plaintiffs who settle would prefer to do it for x∗L − tPL rather than µx∗H − tPH − c.
Yet the offer x∗L − tPL would only be made if all types selected e = L, which is not an
equilibrium.

Finally, and more importantly, asymmetric information induces overinvestment. Plain-
tiffs with weak cases (x < x̃) do not invest when information is symmetric, while they do
when it is asymmetric. This choice is rewarding as they earn an informational rent. Part of
the high-types (those who settle: x̃ < x < x∗H) also benefit from asymmetric information.

5 Equilibria when trial costs are low

We now turn to the complementary case x∗H < x̃. Under this condition, assume that all
types decide to invest in case preparation. Then the defendant makes the offer µx∗H − tPH ,
which is rejected by all types above x∗H . But the plaintiffs whose type lie between x∗H and
x̃ are better off, in court, with e = L rather than with e = H (see Figure 4). Therefore, it
can no longer be an equilibrium for all types of plaintiff to invest.

We know from Lemma 1 that high types invest in case preparation. The following propo-
sition goes a step further towards the characterization of the equilibrium in characterizing
partially the plaintiff’s strategy and completely the defendant’s one.

Proposition 2. Assume that x∗H < x̃. (i) In equilibrium, plaintiffs with strong cases
(x > x̃) invest and go to court; plaintiffs with weak cases (x ≤ x̃) are indifferent between
investing or not. (ii) After e = L, the defendant makes a single offer, x̂− tPL , where x̂ lies
between x∗H and x∗L and x̂ < x̃; after e = H, she offers µx̂ − tPH with probability 1/µ and
µx̃− tPH with probability 1− 1/µ.

Proof. To prove (i), we first observe that vL(x̃) = x̃ − tPL (see the proof of Lemma 1).
In Appendix D, we show, by using the convexity of the functions vH and vL, that the
defendant, after observing e = H, makes no offer greater than µx̃− tPH , which is equivalent
to vH(x̃) = vL(x̃). It follows that vH(x) = µx − tPH − c > vL(x) = x − tPL for x > x̃, and
that plaintiffs with strong cases invest and go to court.

We now turn to plaintiffs with weak cases, and show that vL = vH on [a, x̃]. We
proceed by contradiction. Suppose that there exists x < x̃ such that vL(x) 6= vH(x), say,
for instance, vL(x) < vH(x). Since vL = vH at x̃, there exists x1, with x < x1 ≤ x̃ such
that vL = vH at x1 and vL < vH on [x, x1). We have vL < vH , σ = 1 and fL = 0 on [x, x1).

Suppose first that FL(x) = 0. Applying Lemma 3, we conclude that vL is constant on
[a, x]. But this is impossible as vH(x1) = vL(x1), vH > vL on a left neighborhood of x1,
and vH is nondecreasing.

13



a bx̃
x

Plaintiff expected gain

x− tPL

µx− tPH − c

x∗H

µx∗
H − tPH − c

Figure 4: When x∗H < x̃, all types choosing e = H is no longer an equilibrium

Next, suppose that FL(x) is positive. In this case, we have: π′L = −FL+TLfL = −FL <
0 on [x, x1), so πL does not attain its maximum in this interval, which, therefore, does not
intersect the support of PL. Applying Lemma 4, we conclude that vL is affine on [x, x1).
More generally, the argument shows that vL is affine as long as it is below vH and FL > 0.
Since vH is convex and vH(x1) = vL(x1), the only possibility is that vL < vH and σ = 1, on
the whole interval [a, x1], which contradicts FL(x) > 0. It follows that vH ≤ vL on [a, x̃].
The proof of vL ≤ vH is symmetric, which yields point (i) of the Proposition.

The key result in part (ii) of the Proposition is that the support of PL must be a
singleton. If the plaintiff has not invested, the defendant does not randomize.17 In the
other case, she randomizes between exactly two offers. Formally, if PL is the singleton {x̂},
then the support of PH must be the pair {x̂, x̃}. The weights of x̂ and x̃ are 1/µ and 1−1/µ
respectively. Details can be found in Appendix E.

Figure 5 shows the plaintiff’s net gain in equilibrium, denoted by v∗, when x∗H < x̃.
Point (i) of the Proposition 2 implies that weak plaintiffs (x < x̃) gets the same expected
utility irrespective of their investment decision: v∗ = v∗H = v∗L. If a ≤ x ≤ x̂, the net
expected payoff of the plaintiff of type x is x̂ − tPL . It becomes x − tPL when x̂ ≤ x ≤ x̃,
and finally µx − tPH − c for x̃ ≤ x ≤ b. Plaintiffs with very weak cases (x < x̂) never go
to court, and earn an informational rent compared to the symmetric information case (see
Figure 2). In contrast, types above x̂ have the same expected payoff under symmetric and

17This property follows from the log-concavity of the distribution of types, see section E.3.
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a bx̂ x̃

µx̃− tPH − c

x̂− tPL

µx̂− tPH − c

x

Plaintiff’s net expec-
ted equilibrium gain

v∗ (x)

Figure 5: Equilibrium plaintiff’s utility when x∗H < x̃

asymmetric information. Plaintiffs with intermediate cases (x̂ ≤ x ≤ x̃) go to court with
probability one if they do not invest, with probability 1/µ if they do. Plaintiffs with strong
cases invest and go to court. We now exhibit a fully specified equilibrium (σ∗, PH , PL).

Proposition 3. Assume that x∗H < x̃. If TL = TH/µ, we set x̂ = x∗L = x∗H , otherwise we
define x̂ as the highest root to the equation

f(x̃)
f(x)

exp
[
µ

TH
(x∗H − x)

]
=

τ(x)− TL
TH/µ− TL

.

We define the defendant’s strategy (PH , PL) as in Proposition 2. We define the plaintiff’s
strategy as follows.

If TL ≥ TH/µ: σ∗(x) =





(f(x̃)/f(x∗H)) exp
[
µ

TH
(x∗H − x̃)

]
for a ≤ x ≤ x∗H

(f(x̃)/f(x)) exp
[
µ

TH
(x− x̃)

]
for x∗H ≤ x ≤ x̃

1 for x̃ ≤ x ≤ b
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and if TL < TH/µ: σ∗(x) =





1− (1− σ(x̂)) (f(x̂)/f(x∗L)) exp
[

1
TL

(x∗L − x̂)
]

for a ≤ x ≤ x∗L

1− (1− σ(x̂)) (f(x̂)/f(x)) exp
[

1
TL

(x− x̂)
]

for x∗L ≤ x ≤ x̂,

(f(x̃)/f(x)) exp
[
µ
TH

(x− x̃)
]

for x̂ ≤ x ≤ x̃,

1 for x̃ ≤ x ≤ b,

then (σ∗, PH , PL) is an equilibrium.

The equilibrium of Proposition 3 is represented on Figures 6a and 6b. The formal check
that the given strategies form an equilibrium is relegated in Appendix G.

The logic behind the shape of σ∗(.) is the following. As stated in Proposition 2, the
defendant makes a unique offer, x̂, after e = L, and she randomizes between x̂ and x̃ after
e = H. Accordingly, πL has to attain its maximum at x = x̂, and πH at both x̂ and x̃. The
function σ∗ of Proposition 3 is such that πH is constant between x̂ and x̃. In Appendix G,
we check that πL is maximal at x̂ on the interval [x̂, b]. On [a, x̂], σ∗(.) is such that πH and
πL are nondecreasing and such that enough low types choose to invest, in accordance with
Equation (7) below. When TL ≥ TH/µ (Figure 6a), this can be achieved by maintaining πH
flat between x∗H and x̂, and keeping σ∗(.) constant between a and x∗H . When TL < TH/µ
(Figure 6b), this choice of σ∗ below x̂ is not consistent with the equilibrium requirements,
as it would not give enough weight to e = H and Equation (7) would be violated. As a
consequence, σ∗(.) has to decrease between a and x̂. A way to satisfy Equation (7) is to
choose σ∗(.) between x∗L and x̂ such that πL is flat and then to maintain σ∗(.) constant
between a and x∗L. In Appendix G, it is checked that, in these circumstances, πH is
increasing on [a, x̂].

Proposition 3 derives an equilibrium plaintiff’s strategy σ. Such a strategy need not
be unique, implying a multiplicity of equilibria. However, all equilibria share an important
common feature. The fraction of weak plaintiffs (x < x̃) who invest in case preparation
is constant across equilibria. Investment by weak plaintiffs is tantamount to bluff: a weak
plaintiff who invests is certain to regret his choice should he receive the low offer and proceed
to court.

Proposition 4. The fraction of plaintiffs with weak cases (x < x̃) who invest in case
preparation is given by

Pr(e = H |x < x̃) =
TH
µ

f(x̃)
F (x̃)

. (7)

Proof. Since x̃ belongs to the support of PH , Lemma 5 implies that σ(x̃+) ≤ σ(x̃−). As
σ(x̃+) = 1 it means that σ(.) is continuous at x̃, with σ(x̃) = 1. Therefore, the function
πH is differentiable at x̃; since πH is maximal at x̃, we have π′H(x̃) = 0, which writes:

FH(x̃) =
TH
µ
fH(x̃) =

TH
µ

f(x̃)
Pr(e = H)

,
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Figure 6a: x∗H < x̃ and x∗H < x∗L

Parameter values: F uniform on [1, 3], tD = tD =

0, tPH = 1.5, tPL = 1.25, c = 2.25, and µ = 2.

Figure 6b: x∗L < x∗H < x̃

Parameter values: F uniform on [1, 3], tD = tD =

0, tPH = 2.5, tPL = 0.5, c = 0.75, and µ = 2.

which, combined with

Pr(e = H |x < x̃) =
1

F (x̃)

∫ x̃

a
σ(x)f(x)dx =

1
F (x̃)

Pr(e = H)FH(x̃),

yields (7).

In the equilibrium of Proposition 3, all plaintiffs with weak cases (x < x̃) resort to
a mixed strategy. Obviously, one can construct equilibria where many low types play in
pure strategy, provided that the probability of investment conditional on x < x̃, given (7),
is not affected. However, mixed strategies cannot not be entirely ruled out, as proved in
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Appendix E.4, because the mixed strategy of the plaintiff of type x̂ must be non degenerate:
0 < σ∗(x̂) < 1. As x̂ belongs to the supports of both PL and PH , σ∗ is continuous at x̂
(Lemma 5), therefore a positive mass of plaintiffs plays in mixed strategy.18

6 Discussion

We now present qualitative properties of the equilibria and comparative statics results that
illustrate the strategic effects at work. First, we show how the introduction of a publicly ob-
servable investment decision by the plaintiff alters Bebchuk’s equilibrium pattern. Second,
we examine the extent of overinvestment by plaintiffs with weak cases, and explain how it
varies with the primitives of the model. Third, we study the welfare effects of introducing
a new technology, starting from a one-technology world.

6.1 The trial probability may locally decrease with case strength

Figures 7a and 7b plot the probabilities of trial conditional on the investment choice as
functions of the case strength x. As stated in Lemma A.1 (see Appendix A), these proba-
bilities are nondecreasing in x. A plaintiff who expects large damages in court is less likely
to settle. Yet Figure 7c shows that this property does not extend to the unconditional trial
probability: a plaintiff with a stronger case can settle more often than a plaintiff with a
weaker case.

Proposition 5. Assume x∗H < x̃. At the equilibrium of Proposition 3, the unconditional
trial probability decreases with case strength on [x∗H , x̃].

Proof. First, we prove that the investment probability σ∗ given in Proposition 3 increases
with case strength on [x∗H , x̃]. For x∗H ≤ x1 < x2 ≤ x̃, log-concavity yields

lnF (x2) ≤ lnF (x1) +
f(x1)
F (x1)

(x2 − x1) ≤ lnF (x1) + µ/TH(x2 − x1).

Taking the exponential and using f(x2)/f(x1) ≤ F (x2)/F (x1) yields σ∗(x2) ≥ σ∗(x1). It
follows that the unconditional probability of trial, 1−σ∗(x) +σ∗(x)/µ, decreases with case
strength on [x∗H , x̃].

This result is in sharp contrast with Bebchuk (1984), as well as with Reinganum and
Wilde (1986), where the probability of settlement is decreasing in x. In the present model,
the endogenous investment decision entails a selection effect, which can delete monotonicity,
as shown on Figure 7c. For a given investment decision, the trial probability increases with
case strength. Ex ante, however, the opposite result may hold as plaintiffs with stronger
cases are more likely to invest in case preparation.

18Admittedly, these results partly follow from our assumption that σ is a function of bounded variations
(see footnote 16). Recall, however, that this restriction allows for an infinite number of discontinuity points.
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Figure 7a: Proba. of trial after e = L
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Figure 7b: Proba. of trial after e = H
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Figure 7c: Unconditional probability of trial

6.2 The extent of overinvestment

Plaintiffs with weak cases (x < x̃) who decide to invest in case preparation can be called
bluffers. If the defendant calls their bluff and brings them to court, they regret their choice.
When x̃ < x∗H , the proportion of bluffers is one, as all types invest, and the bluff is always
successful as the defendant settles with all types below x∗H > x̃. When x∗H < x̃, however,
this proportion, given by (7), is lower than one; moreover, the bluff is successful with
probability 1− 1/µ only as the defendant randomizes between a low and a high offer after
observing that the plaintiff has invested. The following Lemma describes how the extent of
bluff varies with the primitives of the model.

Lemma 2 (Proportion of bluffers). In equilibrium, the proportion of bluffers becomes larger
when (other things being equal):
i) The defendant’s trial cost, tD, increases.
ii) The plaintiff’s trial cost after e = L, tPL , increases.
iii) The sunk cost of investment, c, decreases.

Proof. i) An increase of tD increases TH , but not does not change x̃. Moreover, the propor-
tion of bluffers tends to one as tD goes to µτ(x̃)− tPH , all other parameters being fixed. ii)
and iii) If tPL increases (resp. c decreases), TH/µ is not affected, while x̃ decreases, therefore
TH
µ /τ(x̃) increases.
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6.3 The welfare effects of introducing a second technology

At the end of Section 2, we compared the expected litigation costs C∗{H} and C∗{L} in the
two benchmark situations. We now investigate the welfare effects of introducing the costly
technology, H, when only the basic one, L, is available, and, symmetrically, of introducing
L when only H is available. The former exercise (introducing the H technology) is rele-
vant when a costly, previously unavailable option (e.g. hiring an expert witness) becomes
available. The latter exercise (introducing the L technology) might seem less intuitive: the
plaintiff, who initially must resort to a costly technology, can now avoid it, at the cost of
a reduced expected award. In practice, such a change could follow from a regulatory in-
tervention that lowers the standard for legal representation. For instance, the government
or the courts could allow self-representation: litigants could then choose to hire a licensed
attorney or to represent themselves.

When x∗H ≥ x̃, the effect is obvious as the equilibrium configuration is the same in {H}
and in {HL}. Hereafter, we focus on the case x∗H < x̃. The total litigation costs in {HL}
are given by:

C∗{HL} =
∫ x̃

x̂

[
σ(x)

TH
µ

+ (1− σ(x))TL

]
f(x)dx+ [1− F (x̃)]TH + cPr(e = H).

Plaintiffs with very weak cases (x < x̂) settle. Plaintiffs with intermediate cases (x̂ ≤ x ≤ x̃)
invest with probability σ, then go to court with probability 1/µ, or do not invest (probability
1 − σ) and go to court with certainty; their contribution to the total costs is therefore
σ(x)THµ + (1−σ(x))TL. Finally, plaintiffs with strong cases (x > x̃) invest and go to court,
generating trial costs TH .

Starting from a one-technology world {e}, the introduction of the case preparation
technology has four effects on total costs. First, the critical case strength below which
plaintiffs always settle is x∗e in {e} and x̂ in {HL}. The threshold x̂ is lower or higher than
x∗e depending on the ordering of TL and TH/µ. Second, in a (possibly empty) intermediate
region [max(x∗e, x̂), x̃], Te is replaced by σ(x)THµ + (1− σ(x))TL, which is certainly smaller
than TH , and may be lower or higher than TL depending, again, on the ordering of TL and
TH/µ. Third, the introduction of L starting from {H} does not change the contribution
of plaintiffs with strong cases; the introduction of H starting from {L} increases their
contribution from TL to TH . Fourth, the introduction of a second technology modifies the
overall investment probability Pr(e = H), and, in turn, the weight of the sunk cost c.

The overall effect is ambiguous in general, but can be determined in the particular case
TH/µ = TL. Under this assumption, the trial probability is the same in {H} and in {L},
so the direct cost effect implies C∗{H} > C∗{L}. Furthermore, in {HL}, plaintiffs with weak
cases generate the same expected trial costs, whether they invest (TH/µ) or not (TL).

Proposition 6 (Pure bluff effect). Assume that x∗H = x∗L < x̃. Then
i) From {L}, the introduction of H reduces the trial probability, raises the expected liti-

gation costs, benefits the plaintiff, irrespective of his type, and harms the defendant.
ii) From {H}, the introduction of L reduces the trial probability and the expected litigation

costs, is beneficial to the plaintiff as well as, if x∗L ≥ TL, to the defendant.
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Proof. See technical appendix H.

The results of Proposition 6 are driven by a pure bluff effect. Under the assumption
x∗H = x∗L < x̃, the incentives to settle in {H} and in {L} are identical; the lower threshold
for settlement, x̂, coincide with x∗H = x∗L. Yet a fraction of types above this threshold
invests in the costly technology, and is rewarded by a generous settlement offer, thereby
reducing the overall probability of trial.

Part ii of Proposition 6 shows that, if TL ≤ x∗L = x∗H < x̃, the introduction of the basic
technology, starting from the situation {H}, is Pareto-improving. The left inequality holds,
for instance, when the distribution of case strength is uniform as x∗L = a+ TL.

Under the assumptions of Proposition 6, the equilibrium total cost when both technolo-
gies are available lies between C∗{H} and C∗{L}. This is not true in general. While overin-
vestment generates inefficient sunk costs, it may also trigger more settlements through the
bluff effect, thereby reducing trial costs. The overall effect may be a reduction of the liti-
gation costs. Starting from {L}, the introduction of H may reduce the expected litigation
costs, even when H alone leads to higher costs than L alone. In other words, the ordering
C∗{HL} < C∗{L} < C∗{H} is possible.19

7 The game with continuous investment

So far, we have assumed that the investment in case preparation is a binary variable.
We now provide some insights of what happens when the investment is continuous. The
following model simply extends the previous one to the continuous case.

7.1 The model

The plaintiff chooses a continuous investment effort e. The expected award at trial is µ(e)x,
where µ increases in e. The effort entails a sunk cost c(e) and a trial cost tP (e) that increase
in e. Total trial costs after e are noted T (e).

Under symmetric information, the defendant, after observing e, offers µ(e)x − tP (e)
to settle the case. The plaintiff accepts the offer and gets utility µ(e)x − tP (e) − c(e).
Accordingly, plaintiff x chooses effort to maximize

max
e
µ(e)x− tP (e)− c(e) d≡ v0(x).

The function v0 is nondecreasing and convex in x. For simplicity, we assume that the
maximum is attained at a unique value, that we note e?(x). By the envelope theorem,

19Assume that x uniformly distributed on [1, 3], and set: c = 0.08, tPL = 0.5, tD = 1.085 so TL = 1.585,
tPH = 0.54, tD = 1.25 so TH = 1.79, and µ = 1.04. Then we have: x∗L = 2.585, x̂ = 2.699, x∗H = 2.721,
x̃ = 3, and C∗{HL} = 0.3259 < C∗{L} = 0.3288 < C∗{H} = 0.3295. All plaintiffs have weak cases as x̃ = b,
yet 86% of them invest in case preparation when both technologies are available. This excessive investment
entails inefficient sunk costs, but comes with a higher settlement rate. The settlement probability is indeed
98% in {HL} as opposed to 79% only in {L}. Accordingly, trial costs are reduced, which more than offsets
the increase in preparation costs.
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v′0(x) = µ(e?(x)). The complete information effort e?(x) is nondecreasing in case strength
x. For simplicity, we assume hereafter that e? is continuous and increasing in x.20

Under asymmetric information, the defendant updates her belief on the distribution of
types after observing effort e. Then she makes a unique settlement offer or randomizes
across several offers, leaving utility v(x|e) to plaintiff x. As explained in Section 3 and
Lemma A.1, one can represent the defendant’s strategy by the utility she leaves to the
plaintiff. The latter chooses effort to maximize

v(x) = max
e
v(x|e). (8)

Plaintiff x’s strategy is a probability measure σ(e|x). If he chooses a unique effort with
certainty, σ(e|x) is a mass point at the corresponding effort level; if he randomizes across
several effort levels, the measure σ(e|x) has a non degenerated support.

In the binary game, we have assumed that the optimal offers x∗H and x∗L are interior
(Section 2.2). Similarly, we assume in the continuous game that, for all x ∈ [a, b], the
defendant problem if all plaintiffs choose e?(x) admits an interior solution, i.e. the optimal
offer in the Bebchuk continuation game after each relevant effort is interior.

7.2 Some properties of the equilibria

The results of this section follow from a line of reasoning similar to that previously used
in the binary case. Details can be found in Appendix I. To begin with, we rule out semi-
separating and pooling equilibria.

Proposition 7. (i) For all but possibly one observed effort, the defendant cannot infer the
plaintiff ’s type (no semi-separating equilibria). (ii) The distribution of observed efforts has
infinite support (no pooling equilibria).

Point (i) of the Proposition states that at most one type separates in equilibrium.
The intuition is as follows: if the defendant infers a plaintiff’s type, x0, after observing
a particular effort, she offers the settlement amount that leaves this type indifferent with
trial. This offer would attract lower types, thus putting constraints on v that make x0

unique.
Point (ii) implies that the distribution of observed efforts cannot be a singleton: full

pooling is impossible in the continuous model. To illustrate, suppose that all plaintiffs
were to choose e?(b), as shown on Figure 8. Since the corresponding Bebchuk offer is
interior by assumption, the defendant would offer an amount smaller than µ(e?(b))b −
tP (e?(b)), inducing agents x slightly below b to choose effort e?(x) and go to court.21 It is
worth noticing the contrast with the binary game, where pooling occurs provided x̃ < x∗H
(see Section 4). When x̃ tends to b, the latter condition becomes more stringent, and is

20In other words, we assume here that v0 is differentiable and strictly convex (see Figure 8). This contrasts
with the binary case, where v0 is the maximum of only two affine functions, and is therefore piecewise affine
(see Figure 2).

21Pooling would occur only in the special case where the defendant always settles after all plaintiffs have
chosen e?(b), i.e. the continuation Bebchuk problem after e?(b) admits a corner solution.
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Figure 8: All types choosing e?(b) cannot be an equilibrium

eventually incompatible with the Bebchuk offer after H being interior (x∗H < b); this limit
case helps understand why full pooling is impossible in the continuous game.

The next result that extends Proposition 4 to the continuous case establishes that the
plaintiff necessarily bluffs in equilibrium.

Proposition 8. In equilibrium, the probability that the defendant observes effort e?(b)
equals f(b)T (e?(b))/µ(e?(b)), and is constant across equilibria.

The proof of Proposition 8 shows that, in equilibrium, effort e?(b) is optimal for any
plaintiff, irrespective of his type, a property also true in the binary case. The proposition
states that the aggregate probability that a plaintiff actually chooses effort e?(b) is positive
and constant across equilibria.

From Lemma I.1 in Appendix, we know that a plaintiff never chooses an effort below his
full information effort. A natural candidate equilibrium in the continuous case would have
plaintiffs x in some interval [x̂, b] randomizing between the two values e?(x) and e?(b) and
getting utility v0(x). Such a configuration would reproduce the equilibrium configuration of
Proposition 2. However, the observation of efforts e?(x), x < b, would allow the defendant
to infer x, in violation of Proposition 7 (i). This suggests that extensive and complicated
randomization from both parties is necessary to sustain an equilibrium with continuous
investment.
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7.3 How does the trial probability vary with case strength?

As shown in Section 3, the probability that agent x goes to court after choosing effort e is
v′(x|e)/µ(e). By the envelope theorem, if agent x chooses effort e with positive probability
(σ(e|x) > 0), we have: v′(x|e) = v′(x). The conditional probability of trial for plaintiff
x after effort e is therefore given by v′(x)/µ(e). This probability increases with x and
decreases with e. The unconditional trial probability for plaintiff x is given by:

Proba trial (x) =
∫ e?(b)

e?(x)
σ(e|x)

v′(x)
µ(e)

de.

The unconditional probability of trial depends on case strength through two channels.
After a given effort e, the conditional probability of trial increases with case strength, in
accordance with the standard monotonicity result. The second channel is the selection
effect: different plaintiffs make different efforts (σ(e|x) depends on x).

The plaintiff with the highest type b chooses his perfect information effort e?(b) with
probability 1. The probability that he goes to court is therefore v′(b)/µ(e?(b)). It follows
that, for any type x

Proba trial (x)
Proba trial (b)

=
v′(x)
v′(b)

.

∫ e?(b)

e?(x)
σ(e|x)

µ(e?(b))
µ(e)

de. (9)

The right-hand side of (9) is the product of two terms. The first one, v′(x)/v′(b), is smaller
than or equal to one by convexity. It tends to make the trial probability higher at b than
at x < b, the usual monotonicity result. The second term reflects the selection effect. For
any type x, this term is greater than or equal to one as µ increases in e, and thus plays in
the opposite direction.22 We do not know whether the selection effect can dominate when
the investment is continuous, as is the case under a binary effort.

8 Concluding remarks

The above presentation has assumed that the informed party is the plaintiff. The model,
however, allows for alternative interpretations. Consider for instance the following tax
evasion situation, where the informed party is the defendant. After a preliminary inspection,
the tax department has found that an agent (firm or individual) hid some transactions
and that a certain amount of taxes has not been paid as a result. Yet thanks to skillful
accounting practices, the agent can justify a fraction of this tax evasion. The amount the
agent can justify is his private information. Once challenged by the authorities, the agent
can hire a costly tax advisor, who is able to reduce the tax liability even further. After
observing this choice, the tax department makes a settlement offer to save on inspection
costs. If the settlement is rejected by the agent, a thorough inspection starts which is costly
for both the tax department and the taxpayer.

22The second term equals one if and only if the plaintiff chooses effort e?(b) with probability one. Since
all plaintiffs choosing e?(b) is not an equilibrium, the second term is strictly greater than one for a non
negligible set of plaintiffs.

24



The model also applies to the following procurement issue. A firm or a government buys
an input (e.g. a commodity) whose quality is variable. The price contractually depends on
the estimated quality, but the quality audit is costly. To save on the evaluation costs, the
buyer proposes a price to the supplier. If the latter refuses the proposed price, the audit
is undertaken, and both the buyer and the supplier incur costs. The supplier can hire an
engineer in charge of quality management, which entails a sunk cost but increases quality.
The buyer makes her price offer after observing the supplier’s effort in quality management.

More generally, the model applies to any context where a monetary transfer must be
decided on the basis of unobserved characteristics of one party, and these characteristics
can be revealed through a costly audit. To save on the auditing costs, the uninformed party
makes an offer, but the informed party has the opportunity to move first, by investing to
improve its position should the audit occur. Notice that the investment of the informed
party could directly enhance the welfare through a real effect on attributes valued by the
players (e.g. a quality improvement). In this paper, we have ruled out this possibility to
focus exclusively on the signaling mechanism and the bluff effect.

Our model assumes that case preparation is more rewarding for stronger cases. But
it accommodates easily to the reverse assumption that weaker cases benefit more from
preparation. Bluff would then translate into underinvestment rather than overinvestment.

We have assumed that the informed party initiates the case, and makes his preparation
decision before the opposite party can move. Depending on the circumstances, however,
the uninformed party may be able to anticipate future litigation and to make an initial offer
at the very beginning of the process. Accordingly, we could envisage successive sequences
of investment decisions and settlement offers. It would be of interest to study the resulting
dynamics, in the spirit of Spier (1992).

Finally, an obvious limitation of our framework is that we study the strategic effects of
case preparation of one party only, leaving the pretrial efforts of the adversary exogenous. It
is tempting to allow both parties to invest. Under symmetric information, this could result
in an arms race. Depending on the costs and returns of the respective investments, both
parties could invest and neutralize each other -a prisoner dilemma. The current framework
emphasizes a different idea: plaintiffs with weak cases invest to manipulate the beliefs of
the opposite party; overinvestment is inherent to asymmetric information.
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Appendix

Lemma 3. Suppose that the plaintiff chooses technology e with positive probability. Let
x ≥ a be such Fe(x) = 0. Then the defendant makes no offer smaller than or equal to
x− tPL (µx− tPH) after L (after H): Pe = v′e = 0 on [a, x].

Proof. We write the proof for e = L. We proceed by contradiction. Suppose that the
defendant makes an offer smaller than or equal to x − tPL : πL attains its maximum at x.
Since FL = 0 on [a, x], πL is constant on [a, x], and therefore, attains its maximum at a.
This would imply

∫ y

a
[−FL(z) + TLfL(z)]dz ≤ 0 for all y ∈ [a, b] , or, noting GL(y) =

∫ y

a
FL(z)dz

e−y/TL
[
− 1
TL
GL(y) + FL(y)

]
≤ 0.

The function e−y/TLGL(y) would be nonincreasing. Since it is zero at a, it would be
everywhere nonpositive, implying that FL and fL would be identically 0. This is impossible
as FL is a probability distribution on [a, b], the desired contradiction.

Lemma 4. Let x ∈ (a, b) be such that πe is not maximal at x. Then ve is affine on
a neighborhood of x. Convex kinks in ve can occur only at points where πe attains its
maximum.

Proof. Since πe is continuous, it is not maximal in a neighborhood of x, which, therefore,
does no intersect the support of Pe. Since, in (a, b), the support of Pe is the same as the
support of v′′e (see Appendix A), πe is affine on that neighborhood.

Lemma 5. If x belongs to the support of PH , then σ(x+) ≤ σ(x−). If x belongs to the
support of PL, then σ(x+) ≥ σ(x−). If x belongs to both supports, then σ is continuous at
x.

Proof. The result follows immediately from the fact that if x maximizes πe, then we must
have: π′e(x−) ≥ π′e(x+).

The appendices referenced by a letter (Appendix A, Appendix A.1 . . . ) are
in a technical appendix which is available from the authors upon request.
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Technical appendix

A Representation of the defendant’s strategy

Let KL be the set of nondecreasing, convex functions v from [a, b] to
[
a− tPL , b− tPL

]
sat-

isfying v(b) = b − tPL and 0 ≤ v′ ≤ 1. Similarly, let KH be the set of nondecreasing,
convex functions v from [a, b] to

[
µa− tPH − c, µb− tPH − c

]
satisfying v(b) = µb − tPH − c

and 0 ≤ v′ ≤ µ.

Lemma A.1. There exists a one-to-one map between pairs (PH , PL) of probability distribu-
tions on [a, b] and pairs (vH , vL) ∈ KH ×KL. Conditionally on the litigation technologies,
the trial probabilities are given by:

PH(x ≤ y) = v′H(y)/µ and PL(x ≤ y) = v′L(y), (10)

and are nondecreasing in case strength.

Proof. For all x ∈ [a, b], the functions v{H}(.;x) and v{L}(.;x) belong to KH and KL

respectively. Both sets are convex. The functions vH and vL given by (3) being convex
combinations of the base functions v{H}(.;x) and v{L}(.;x), also belong to KH and KL.
We have:

vH(y) =
[
µy − tPH

]
PH(x ≤ y) +

∫ b

y
[µx− tPH ]dPL(x)− c (11)

vL(y) =
[
y − tPL

]
PL(x ≤ y) +

∫ b

y
[x− tPL ]dPL(x), (12)

where Pe(x ≤ y) is the probability that the plaintiff of type y, if he exerts effort e, goes to
trial. We refer to this probability as the conditional trial probability. Being nondecreasing
and convex, ve is differentiable almost everywhere.23 Differentiating (11) and (12) yields
(10). Since vL and vH are convex, the conditional trial probabilities are nondecreasing in
case strength.

We show now that the base functions v{H}(.;x) and v{L}(.;x), a ≤ x ≤ b, generate the
convex sets KH and KL and explain how any function ve ∈ Ke, e = H,L, can be written
in the form (3).

23More precisely, ve admits at every point a left- and a right-derivative, which coincide almost everywhere.
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We have already shown that if Pe is a probability distribution on [a, b], then the functions
vH and vL given (3) belongs to KH and KL. Conversely, pick any vL ∈ KL. Integrating by
parts and using vL(b) = b− tPL , we have

vL(x) = −
∫ b

x
v′L(y)dy + b− tPL

=
∫ b

x
v′′L(y).[y − tPL ]dy + [1− v′L(b)].[b− tPL ] + v′L(x).[x− tPL ]

=
∫ b

x
v′′L(y).[y − tPL ]dy +

∫ x

a
v′′L(y).[x− tPL ]dy

+[1− v′(b)].[b− tPL ] + v′L(a)[x− tPL ]

=
∫ b

a
v′′L(y) max{x− tPL , y − tPL}dy

+[1− v′L(b)](b− tPL ) + [x− tPL ]v′L(a).

The same computation yields

vH(x) =
∫ b

a

v′′H(y)
µ

max{µx− tPH , µy − tPH}dy

+
[
1− v′H(b)

µ

]
(µb− tPH) + [µx− tPH ]

v′H(a)
µ
− c.

It follows that any ve ∈ Ke can be written according to (3) with Pe given by

PL(y) = v′L(a)δa + v′′L(y) + [1− v′L(b)]δb

PH(y) =
v′H(a)
µ

δa +
v′′H(y)
µ

+
[
1− v′H(b)

µ

]
δb,

where δx represents the mass point at x. Since ve is a convex function, its first-order
derivative is a nondecreasing function and its second-order derivative is a positive measure.
We have ∫ b

a
dPL(y) = v′L(a) +

∫ b

a
v′′L(y)dy + 1− v′L(b) = 1,

so the total mass of PL is 1. The same result holds for PH . So PL and PH are probability
distributions on [a, b].

Notice that Pe could, in theory, have mass points at a, at b and at any interior point
in (a, b). An interior mass point corresponds, as already mentioned, to a convex kink of ve
(jump of v′e, mass in v′′e ).
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B Evaluation of the defendant’s profit

Lemma B.1. The conditional profits of the defendant given e = H and e = L can be
expressed as functions of her strategy (vH , vL) in the following way:

ΠH =
∫ b

a

[
−vH(x)− TH

µ
v′H(x)

]
fH(x)dx− c

ΠL =
∫ b

a

[
−vL(x)− TLv′L(x)

]
fL(x)dx.

Proof. Integrating twice by parts and using the fact that πL(b) = −(b − tPL ), we find that
the defendant’s profit, when she faces e = L, is given by
∫ b

a

[
−vL(x)− TLv′L(x)

]
fL(x)dx =

∫ b

a
v′L(x)[FL(x)− TLfL(x)]dx− vL(b)

= −
∫ b

a
v′L(x)π′L(x)− [b− tPL ]

=
∫ b

a
πL(x)v′′L(x)dx− v′L(b)πL(b) + v′L(a)πL(a)− [b− tPL ]

=
∫ b

a
πL(x)v′′L(x)dx+ [1− v′L(b)]πL(b) + v′L(a)πL(a)

=
∫ b

a
πL(x)dPL(x).

Similarly, the defendant’s profit, when she faces e = H, is given by (use πH(b) = −(µb−tPH))
∫ b

a

[
−vH(x)− TH

µ
v′H(x)

]
fH(x)dx− c =

=
∫ b

a
v′H(x)

[
FH(x)− TH

µ
fH(x)

]
− vH(b)− c

=
1
µ

(∫ b

a
πH(x)v′′H(x)dx− v′H(b)πH(b) + v′H(a)πH(a)

)
− [µb− tPH ]

=
∫ b

a
πH(x)v′′H(x)/µ dx+ [1− v′H(b)/µ]πH(b) + πH(a)v′H(a)/µ

=
∫ b

a
πH(x)dPH(x).

C Proof of Proposition 1 (uniqueness part)

The proof of the uniqueness of the equilibrium configuration when x∗H > x̃ requires a
preliminary result.
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Lemma C.1. Let E be an equilibrium such that vL(x̃) = x̃ − tPL . Let Ě be the same
configuration as E except that vH is replaced by max(vL, vH) on [a, x̃].

Then Ě is an equilibrium. For both litigants, the payoffs are the same at E and Ě.

Proof. We have vH(x̃) ≥ vL(x̃) = x̃− tPL , which yields: v̌H(x̃) = vH(x̃). It follows immedi-
ately that v̌H belongs to KH and that the change corresponds to an admissible defendant’s
strategy P̌H . The only impact of the change is the following: the plaintiffs who strictly
preferred L to H at E are indifferent between the two levels of effort at Ě. Those plaintiffs
can therefore continue to choose e = L with certainty (σ̌ = σ = 0 is optimal for them).

We now use Lemma B.1 (see Appendix B) to show that the defendant’s profit is maximal
at Ě. Since v̌l = vL and the plaintiff’s strategy is the same at E and Ě (σ̌ = σ), the
defendant’s payoff when e = L is the same at E and Ě. Therefore the strategy vL still
maximizes the defendant’s payoff when e = L.

If the plaintiff invests in case preparation, the utility vH changes only when σ = 0, so
the integral

∫ b
a vH(x)fH(x)dx is not affected. The derivatives v′H and v̌′H coincide whenever

vL 6= vH , but can be different at points where vH = vL and σ = σ̌ > 0 (corresponding to
plaintiffs who randomize between the two technologies). The difference between v′H and
v̌′H at points where fH is positive could, in principle, affect the defendant’s payoff. In fact,
this is not the case, since such a possibility can only occur on a negligible set.

Indeed, vH and vL are differentiable almost everywhere. If vH(x) = vL(x) and v′H(x) =
v′L(x), then v̌′H(x) = v′H(x), so v′H and v̌′H coincide. If vH(x) = vL(x) and v′H(x) 6= v′L(x),
then v̌H is not differentiable at x, which can occur only a negligible subset.

It follows that v′H and v̌′H coincide at almost every x such that σ > 0 and that the
defendant’s payoff when e = H is the same at E and Ě. We conclude that the change in
the defendant’s strategy (from vH to v̌H) does not affect her payoff.

To prove uniqueness, we proceed by contradiction. We suppose that there exists an
equilibrium where the probability of e = L is positive. From the proof of Lemma 1, we
know that vL(x̃) = x̃ − tPL . Lemma C.1 applies: there exists another equilibrium with the
same plaintiff’s strategy, the same payoff for both litigants and vH ≥ vL on [a, x̃]. We
now work with this equilibrium and exhibit a contradiction. Since, by assumption, the
probability of e = L is positive and given that high types (x > x̃) chooses e = H (recall
Lemma 1), we cannot have vH > vL everywhere on (a, x̃]. Let x1, a < x1 ≤ x̃, be the
highest solution to vL = vH . By construction, all plaintiffs with type x > x1 strongly prefer
e = H to e = L; in other words: vH > vL and σ = 1 on (x1, b]. It follows that σ(x+

1 ) = 1.

We now use the property vH ≥ vL on [a, x̃] (coming from Lemma C.1) to prove that
x1 necessarily belongs to the support of PH . Here again, we proceed by contradiction.
Suppose that x1 were not in the support of PH . Then, by Lemma 4, vH would be affine in
a small interval around x1. The function vL would be below this affine function for x ≤ x1,
would coincide with it at x1 and would be strictly below for x > x1. This would violate the
convexity of vL. We conclude that x1 belongs to the support of PH .
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Yet we have:

−
∫ x1

a
σ(t)dF (t) +

TH
µ
σ(x+

1 )f(x1) = −
∫ x1

a
σ(t)dF (t) +

TH
µ
f(x1)

≥ −F (x1) +
TH
µ
f(x1)

= f(x1). [TH/µ− τ(x1)]
≥ f(x1). [TH/µ− τ(x̃)]
> 0.

This implies that π′H(x+
1 ) > 0, which contradicts x1 ∈ supp PH ⊂ argmax πH . This

contradiction yields uniqueness. �

D Proof of the first part of Proposition 2

We assume that TH/µ < τ(x̃) or x∗H < x̃. We already know that the defendant makes
no offer greater than x̃ after observing L, that is vL(x̃) = x̃ − tPL . In this appendix, we
show that, after observing e = H, the defendant makes no offer greater than µx̃− tPH with
positive probability, which is equivalent to vH(x̃) = vL(x̃).

We proceed by contradiction. Suppose that the defendant makes an offer µx2 − tPH ,
x̃ < x2 ≤ b, with positive probability. We follow the same argument as in the proof of the
uniqueness part of Proposition 1. Since vL(x̃) = x̃−tPL , we can apply Lemma C.1: replacing
vH by max(vL, vH) on [a, x̃], leaving vL and σ unchanged, we get another equilibrium where
both litigants get the same payoff. We now work with this new equilibrium and exhibit a
contradiction. Since, by assumption, the probability of L is positive and given that high
types (x > x̃) chooses e = H by Lemma 1, we cannot have vH > vL everywhere on (a, x̃].
Let a < x1 < x̃ be the highest solution to vL = vH .24 By construction, all plaintiffs with
type x > x1 strongly prefer e = H to e = L; in other words: vH > vL and σ = 1 on (x1, b].

We now use the property (coming from Lemma C.1) that vH ≥ vL on [a, x̃], to prove
that x1 belongs to the support of PH . Again, we proceed by contradiction. Suppose that x1

were not in the support of PH . Then, by Lemma 4, vH would be affine in a small interval
around x1. Since vL ≤ vH on [a, x̃], the function vL would be below this affine function for
x ≤ x1, would coincide with it at x1 and would be strictly below for x > x1. This would
violate the convexity of vL. We conclude that x1 must belong to the support of PH .

On [x1, b], we have σ = 1 and π′H is equal (up to a positive multiplicative factor) to

−
∫ x

a
σ(t)f(t)dt+

TH
µ
f(x) = κ− F (x) +

TH
µ
f(x),

where κ =
∫ x1

a (1 − σ)dF > 0. Since τ is nondecreasing, the function πH on [x1, b] is first
nondecreasing, then nonincreasing: it attains its maximum at some point(s) greater than

24Note that, in the proof of the uniqueness part of Proposition 1, we only knew that x1 ≤ x̃.
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x∗H . We must therefore have: x∗H < x1 < x̃ < x2. Since the function πH is maximal at x1

and at x2, it must remain constant in between, which implies κ− F (x) + TH
µ f(x) = 0, or

TH
µ

1
τ

= 1− κ

F

on [x1, x2]. Since the left-hand side is decreasing and the right-hand side is increasing, it
follows that both sides are constant, which implies that F is constant, and f = 0 on [x1, x2],
the desired contradiction. It follows that vL(x̃) = vH(x̃).

E Proof of the second part of Proposition 2

The proof is organized as follows. First, we show that after e = H, the defendant offers
µx̃−tPH with probability 1−1/µ. Second, we establish a number of properties of offers made
after e = L. Third, we exploit these properties to prove that, after e = L, the defendant
makes only one offer (the support of PL is the singleton). Finally, noting x̂ − tPL this
single offer, we show that the indifferent plaintiff x̂ uses a non-degenerated mixed strategy:
0 < σ(x̂) < 1.

E.1 After e = H, the defendant offers µx̃− tPH with probability 1− 1/µ

Since vH = vL on [a, x̃] and vL ∈ KL, the left-derivative of vH at x̃ is lower than or equal
to 1. Since v′H(x̃+) = µ, the derivative of vH/µ jumps upwards, with a jump greater than
or equal to 1 − 1/µ. The probability of playing x̃ after e = H has to be greater (or equal
to) than 1− 1/µ.

It follows that πH is maximal at x̃. This implies that σ is continuous at x̃. Indeed, if
σ(x̃−) were strictly smaller than σ(x̃+) = 1, we would have π′H(x̃−) < π′H(x̃+) = 0 and πH
would not be maximal at x̃.

Since −FL(x̃) + TLfL(x̃) = −FL(x̃) < 0, πL is not maximal at x̃ and vL is affine on a
neighborhood of x̃. This implies v′(x̃−) = 1. So the jump of v′H/µ at x̃ is exactly 1− 1/µ.
We conclude that, after e = H, the defendant offers µx̃− tPH with probability 1− 1/µ

E.2 Properties of offers made after e = L

From the proof of Lemma 1, we know that any offer made after e = L, say x̂− tPL , satisfies:
x̂ ≤ x̃. As mentioned above, πL is not maximal at x̃, so we have: x̂ < x̃. From Proposition 2,
we know that vH = vL on [a, x̃]. From Lemma A.1 (see Appendix A), we deduce that the
supports of PL and PH coincide on this interval. It follows that x̂ belongs to the support
of both PH and PL, and that the functions πH and πL both attain their maximum at x̂.
From Lemma 5, σ must be continuous at this point, and πH and πL are differentiable at x̂,
so we have

∫ x̂

a
σdF =

TH
µ
σ(x̂)f(x̂) (13)

∫ x̂

a
(1− σ)dF = TL[1− σ(x̂)]f(x̂). (14)
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Adding up this two equations yields

F (x̂) = [TH/µ− TL]σ(x̂)f(x̂) + TLf(x̂),

which implies x̂ = x∗H = x∗L when TH/µ = TL, and equation (15) otherwise:

σ(x̂) =
τ(x̂)− TL
TH/µ− TL

. (15)

As the probability σ(x̂) is between 0 and 1, and as τ is increasing, it follows that x̂ lies
between x∗L and x∗H . More precisely, if TL < TH/µ, then x∗L < x̂ < x∗H and if TH/µ < TL,
then x∗H < x̂ < x∗L (see Figures 6a and 6b).

Since πH attains its maximum at x̂, we have
∫ x

x̂

[
−FH(y) +

TH
µ
fH(y)

]
dy ≤ 0

for all y. Setting GH(x) =
∫ x
x̂ FH(y)dy, we get

−GH(x) +
TH
µ
FH(x) ≤ TH

µ
FH(x̂). (16)

Multiplying by exp(−µx/TH) yields

exp(−µx/TH)
[
− µ

TH
GH(x) + FH(x)

]
≤ FH(x̂) exp(−µx/TH).

Integrating between x̂ and x ≥ x̂ yields

GH(x) ≤ TH
µ
FH(x̂)

[
exp

(
µ

TH
(x− x̂)

)
− 1
]

Now using (16) yields, after simplification

FH(x) ≤ FH(x̂) exp
[
µ

TH
(x− x̂)

]
(17)

for every x ≥ x̂. The same computation for the L-technology shows that

FL(x) ≤ FL(x̂) exp
[

1
TL

(x− x̂)
]
. (18)

E.3 After e = L, the defendant makes only one offer

We now prove that PL is a mass point. We proceed by contradiction. We assume that there
exists x1 and x2, a < x1 < x2 < x̃, both in the supports of PL and PH .

If TH/µ = TL, we already know that this is impossible, since we must have x1 = x2 =
x∗H = x∗L. We assume TL < TH/µ, which implies (see the preceding section): x∗L < x1 <
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x2 < x∗H .
25 Applying (17) for x̂ = x1 and x = x2 we obtain (using the f.o.c. (13) for both

x1 and x2):

σ(x2)f(x2) ≤ σ(x1)f(x1) exp
[
µ

TH
(x2 − x1)

]
. (19)

From (15), we have for i = 1, 2:

σ(xi)f(xi) =
F (xi)− TLf(xi)
TH/µ− TL

> 0

and as TL < TH/µ, F (xi)− TLf(xi) > 0. Therefore, inequality (19) can be rewritten as

F (x2)− TLf(x2) ≤ (F (x1)− TLf(x1)) exp
[
µ

TH
(x2 − x1)

]

or taking the logarithm

log (F (x2)− TLf(x2))− log (F (x1)− TLf(x1)) ≤ µ

TH
(x2 − x1). (20)

Let Λ(x) = ln (F (x)− TLf(x)) = lnF (x) + ln (1− TL/τ(x)). Since F is log-concave
and τ is increasing, we have τ(x2) < τ(x∗H) = TH/µ, and

Λ(x2)− Λ(x1) ≥ lnF (x2)− lnF (x1) ≥ 1
τ(x2)

.(x2 − x1) ≥ µ

TH
(x2 − x1), (21)

which, combined to (20), yields x1 = x2, the desired contradiction. We must therefore have:
x1 = x2.

E.4 The plaintiff x̂ randomizes: 0 < σ(x̂) < 1

We now prove that the probability σ(x̂) is strictly between 0 and 1 as it satisfies

f(x̃)
f(x̂)

exp
[
µ

TH
(x̂− x̃)

]
≤ σ(x̂) ≤ 1− Pr(e = L)

TLf(x̂)
exp

[
1
TL

(x̂− x̃)
]
, (22)

where Pr(e = L) = 1− Pr(e = H) is known from (7).
Indeed, using the first-order condition (13) and applying (17) at x = x̃ yields

FH(x̃) =
TH
µ

f(x̃)
Pr(e = H)

≤ TH
µ

σ(x̂)f(x̂)
Pr(e = H)

exp
[
µ

TH
(x̃− x̂)

]

which yields the left inequality of (22). Using the first-order condition (14) and applying
(18) at x = x̃ yields

FL(x̃) = 1 ≤ TL
(1− σ(x̂))f(x̂)

Pr(e = L)
exp

[
1
TL

(x̃− x̂)
]

which yields the right inequality of (22).
25The case x∗H < x1 < x2 < x∗L is treated similarly starting with (18) instead of (17).
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F The defendant’s payoff

Assume that x∗H < x̃. The defendant’s profit can be expressed as the difference between the
total welfare and the utility left to the plaintiff (see Lemma B.1). Given that vL = vH = v∗,
we have:

−Π∗{HL} = −Pr(e = L)Π∗L − Pr(e = H)Π∗H

=
∫ b

a

{
[v(x) + TLv

′(x)][1− σ(x)] +
[
v(x) +

TH
µ
v′(x)

]
σ(x)

}
f(x)dx

+cPr(e = H).

Using equation (7) and observing that v′ = 1 on [x̂, x̃] yields:

−Π∗{HL} = (x̂− tPL )
∫ x̂

a
f(x)dx+

∫ x̃

x̂
[x+ tD] f(x)dx+

∫ b

x̃
[µx+ tD] f(x)dx

+c
TH
µ
f(x̃) +

(
TH
µ
− TL

)∫ x̃

x̂
σ(x)f(x)dx. (23)

G Construction of an equilibrium (Proof of Proposition 3)

We first check that the triplet (σ∗) We examine successively the case TH/µ < TL, TH/µ =
TL and TH/µ > TL. Hereafter, we adopt the natural notations: f∗L = f(x∗L), F ∗L = F (x∗L),
f∗H = f(x∗H), F ∗H = F (x∗H), f̃ = f(x̃), F̃ = F (x̃).

G.1 The case TH/µ < TL

Using the log-concavity of F , we get, for x∗H < x1 < x2 < x̃:

lnF (x2)− lnF (x1) ≤ 1
τ(x1)

(x2 − x1) ≤ µ

TH
(x2 − x1).

It follows that − lnF (x) + µ
TH
x is nondecreasing on [x∗H , x̃]. Since τ = F/f is increasing, it

follows that − ln f(x) + µ
TH
x is increasing, and so is σ∗ on [x∗H , x̃]. Since TH/µ − TL < 0,

the function (τ − TL)/(TH/µ− TL) is decreasing on [x∗H , x̃], is equal to 1 at x∗H and to 0 at
x∗L. By continuity, the equation

σ∗(x) =
τ(x)− TL
TH/µ− TL

(24)

has a unique solution x̂ in [x∗H ,min(x̃, x∗L)]. Notice that we have: σ∗ ≥ (τ−TL)/(TH/µ−TL)
on [x̂, x̃].

We have: σ∗(x̃) = 1, so σ∗ is continuous at x̃. The function σ∗ takes its value in (0, 1]
and is continuous on [a, b]. Since σ∗ is constant on [a, x∗H ], we have have

∫ x∗H

a
σ∗(x)f(x)dx =

f̃

f∗H
exp

[
µ

TH
(x∗H − x̃)

]
.F ∗H =

TH
µ
f̃ exp

[
µ

TH
(x∗H − x̃)

]

=
TH
µ
σ∗(x∗H)f(x∗H),
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which yields π′H(x∗H) = 0. From the definition of σ∗ on (x∗H , x̃), it follows that π′H is
constant on that interval, which, given that π′H(x∗H) = 0, yields π′H = 0 on that interval.
On [a, x∗H ], the quantity −FH + TH

µ fH is equal, up to a multiplicative positive constant,
to −F + TH

µ f ≥ 0, which yields π′H ≥ 0 on [a, x∗H ]. Finally, on [x̃, b], we have σ∗ = 1 and
the quantity −FH + TH

µ fH is equal, up to an additive constant, to −F + TH
µ f , which is

decreasing on [x̃, b] (by log-concavity of F ). This shows that π′H ≤ 0 on this interval. In
sum, the function πH is nondecreasing on [a, x∗H ] and constant on [x∗H , x̃] and nonincreasing
(and concave) on [x, b].

Using x̂ < x∗L, σ constant, and the log-concavity of F , it is easy to check that πL is
nondecreasing on [a, x̂]. On [x̂, x̃], we have, by using π′H = 0:

−
∫ x

a
(1− σ∗(t))f(t)dt+ TL(1− σ∗(x))f(x) = −F (x) +

∫ x

a
σ∗(t)f(t)dt+ TL(1− σ∗(x))f(x)

= −F (x) +
(
TH
µ
− TL

)
σ∗(x)f(x) + TLf(x)

= (TH/µ− TL)f(x)
[
σ∗(x)− τ(x)− TL

TH/µ− TL

]

≤ 0

which yields π′L ≤ 0. It follows that πL is nonincreasing on [x̂, x̃]. On [x̃, b], we have σ∗ = 1,
and πL is affine and decreasing. In sum, πL is nondecreasing on [a, x̂] and nonincreasing on
[x̂, b].

We have shown that πH attains its maximum at x̂ and x̃ and that πL attains its max-
imum at x̂. Therefore the corresponding strategy (PH , PL) is optimal for the defendant.
Any plaintiff with type below x̃ is indifferent between investing or not, and may randomize
according to the proposed probability σ∗.

�

G.2 The case TH/µ = TL

Using σ constant and the log-concavity of F , it is easy to check that πH and πL are
nondecreasing on [a, x̂]. As above, πH is constant on [x∗H , x̃] and decreasing and concave
on [x̃, b]. On [x̂, x̃], the same computation as above shows that

−
∫ x

a
(1− σ∗(t))f(t)dt+ TL(1− σ∗(x))f(x) = −F (x) + TLf(x) = −F (x) +

TH
µ
f(x) ≤ 0,

implying that πL is nonincreasing on [x̂, x̃]. On [x̃, b], πL is still affine and decreasing.
�

G.3 The case TH/µ > TL

As shown above, the function
(
f̃/f

)
exp

[
µ
TH

(x− x̃)
]
is increasing on [x∗H , x̃], and is equal

to 1 at x̃. Thus the value of the function at x∗H is smaller than or equal 1. The function
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(τ − TL)/(TH/µ− TL) is also increasing on [x∗L, x
∗
H ], is equal to 0 at x∗L, to 1 at x∗H and is

greater than 1 at x̃. It follows that the equation

f̃

f(x)
exp

[
µ

TH
(x− x̃)

]
=

τ(x)− TL
TH/µ− TL

(25)

has at least one solution in [x∗L,min(x∗H , x̃)]. We define x̂ < x̃ as the highest root in this
interval.

By the same reasoning as above (using the log-concavity of F ), we obtain that σ∗ is
decreasing on [x∗L, x̂]. Since σ∗ is constant on [a, x∗L], σ∗ takes its values in [0, 1], and we
have: σ∗ ≥ (τ − TL)/(TH/µ− TL) on [a, x̂] and σ∗ ≤ (τ − TL)/(TH/µ− TL) on [x̂, x̃].

We have
∫ x∗L

a
(1− σ∗(x)) f(x)dx = (1− σ̂)

(
f̂/f∗L

)
. exp

[
1
TL

(x∗L − x̂)
]
.F ∗L

= TL(1− σ̂)f̂ exp
[

1
TL

(x∗L − x̂)
]

= TL (1− σ(x∗L)) f(x∗L),

which yields π′L(x∗L) = 0. Since, by construction of σ∗, π′L is constant on [x∗L, x̂], we also
have: π′L = 0 on that interval. In particular: π′L(x̂) = 0. The definition of x̂ then implies:
π′H(x̂) = 0. Now, by construction of σ∗, π′H is constant on [x̂, x̃], which, in turn, yields:
π′H = 0 on that interval. As in case (i) and (ii), we have σ∗ = 1 on [x̃, b], and πH is concave
and nonincreasing on that interval.

Again, using σ constant on [a, x∗L], it is easy to check that πL and πH are nondecreasing
on that interval. On [x∗L, x̂], we have, by using π′L = 0:

−
∫ x

a
σ∗f(t)dt+

TH
µ
σ∗(x)f(x) = −F (x) +

∫ x

a
(1− σ∗)f(t)dt+

TH
µ
σ∗(x)f(x)

= −F (x) + TL(1− σ∗(x))f(x) +
TH
µ
σ∗(x)f(x)

= −F (x) + TLf(x) + σ∗(x)f(x)
(
TH
µ
− TL

)

= f(x)(TH/µ− TL)
[
σ∗(x)− τ(x)− TL

TH/µ− TL

]

≥ 0,

implying that πH is nondecreasing on [x∗L, x̂]. By construction, πH is constant on [x̂, x̃],
and is concave and nonincreasing on [x̃, b]. It follows that πH attains its maximum at x̂
and x̃.

As to πL, we already know that it is nondecreasing on [a, x∗L] and constant on [x∗L, x̂].
Now on [x̂, x̃], the same computation as in case (i) shows, by using π′H = 0, that

−
∫ x

a
(1− σ∗)f(t)dt+ TL(1− σ∗(x))f(x) = (TH/µ− TL)f(x)

[
σ∗(x)− τ(x)− TL

TH/µ− TL

]
≤ 0
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implying that πL is nonincreasing on [x̂, x̃]. Finally on [x̃, b], we know that σ∗ = 1, so πL is
affine and decreasing, which shows that πL attains its maximum at x̂.

�

H Proof of Proposition 6

If x∗H = x∗L, we have, by Proposition 2: x̂ = x∗H = x∗L. In the two benchmark situations,
plaintiffs settle if and only if their type is below x̂, and the probability of settlement is
F (x∗H) = F (x∗L) = F (x̂). When both technologies are available, plaintiffs with type x ≤ x̂
continue to settle; but plaintiffs with type x ∈ [x̂, x̃] now settle when they invest and receive
the high offer µx̃ − tPH , which occurs with probability σ(x).[1 − 1/µ]. The probability
of settlement is, therefore, increased by (1− 1/µ)

∫ x̃
x̂ σ(x)f(x)dx, which is positive, since

σ(x̃) = 1 and σ is continuous at x̃ (see Appendix E).
Under the assumptions of the Proposition, the total costs simplify into C∗{HL} = cPr(e =

H) + [F (x̃)− F (x̂)]TL + [1− F (x̃)]TH . Comparing with (2) yields C∗{L} < C∗{HL} < C∗{H}.
It is straightforward to check that the plaintiff’s payoff in {HL}, which is represented

on Figure 5, is uniformly greater than his payoffs v{L}(x; x̂) and v{H}(x; x̂) in the one-
technology worlds. It follows that the plaintiff, whatever his type, prefers {HL} to both
{H} and {L}.

Starting from {L}, the introduction of the costly technology reduces total welfare and
benefits the plaintiff (irrespective of his type); it must therefore harm the defendant. Start-
ing from {H}, the introduction of the basic technology raises total welfare; so it might
benefit both parties.

Finally we prove item ii of the proposition: when TL ≤ x∗L = x∗H < x̃, the defendant
prefers {HL} to {H}. Equation (23) of Appendix F yields the expected payoff of the
defendant in equilibrium when both technologies are available:

Π∗{HL} = −(x̂− tPL )
∫ x̂

a
f(x)dx−

∫ x̃

x̂
[x+ tD] f(x)dx−

∫ b

x̃
[µx+ tD] f(x)dx− TLf(x̃)c.

When only the H technology is available, the defendant’s profit is

Π∗{H} = −(µx̂− tPH)
∫ x̂

a
f(x)dx−

∫ b

x̂
[µx+ tD] f(x)dx

whence

Π∗{HL} −Π∗{H} =
(
µx̂− tPH − (x̂− tPL )

) ∫ x̂

a
f(x)dx+ (µ− 1)

∫ x̃

x̂
xf(x)dx− TLf(x̃)c

+ (tD − tD) (F (x̃)− F (x̂))

= (µ− 1) (x̂− TL)
∫ x̂

a
f(x)dx+ (µ− 1)

∫ x̃

x̂
xf(x)dx− TLf(x̃)c

+ (tD − tD)F (x̃)
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Using x̃ = (tPH − tPL + c)/(µ− 1) = TL + c/(µ− 1)− (tD − tD)/(µ− 1) and F (x̃) > TLf(x̃),
we get

Π∗{HL} −Π∗{H}
µ− 1

≥ (x̂− TL)F (x̂) +
∫ x̃

x̂
xf(x)dx− TLf(x̃)(x̃− TL)

= (x̃− TL)F (x̃) +
∫ x̃

x̂
[−F (x) + TLf(x)]dx− TLf(x̃)(x̃− TL)

=
∫ x̃

x̂
[−F (x) + TLf(x)] dx+ (x̃− TL) [F (x̃)− TLf(x̃)] .

Using the log-concavity of F , it is easy to check that the function −F+TLf is nonincreasing
on [x̂, x̃], which yields (using the assumption x̂ = x∗L > TL)

Π∗{HL} −Π∗{H}
µ− 1

≥ (x̃− x̂)[−F (x̃) + TLf(x̃)] + (x̃− TL) [F (x̃)− TLf(x̃)]

= (x̂− TL) [F (x̃)− TLf(x̃)]
≥ 0.

I The continuous model

I.1 Proof of Proposition 7

(i) Assume that the defendant infers a plaintiff’s type x0 from the observed effort, that is,
only x0 is choosing this effort in equilibrium. She therefore offers (with probability one)
the settlement amount that leaves plaintiff x0 indifferent between accepting the offer and
going to trial. If this plaintiff has chosen effort e?(x), he therefore gets utility µ(e?(x))x0−
tP (e?(x))− c(e?(x)), which is lower than or equal to v0(x0), with equality only for x = x0.
It follows that x0 can separate only by investing e?(x0). The settlement offer after e?(x0)
would thus attract all types between a and x0. For x0 to separate with e?(x0), it is then
necessary that all types between a and x0 earn exactly v0(x0). However, as v(x) is convex,
such a flat can occur only once. Consequently, only one type (if any) is able to separate in
equilibrium.

(ii) We need the following result that extends Lemma 1 to the continuous case.

Lemma I.1. The plaintiff never chooses an effort below his perfect information effort.

Proof. We first show that, after observing effort e, the defendant makes no offer greater
than µ(e)(e?)−1(e)− tP (e). Formally: v(x|e?(x)) = v0(x) for all x.

To this aim, we use an unraveling argument. Note first that v(x|e?(x)) = v0(x) is
obvious for x = b as the defendant has no incentives to offer more than µ(e?(b))b − tP (b).
Now suppose that for some x < b, v(x|e?(x)) > v0(x). Then the functions v(.|e?(x)) and
v0(.) would intersect at some point x0, with x < x0 < b. The defendant would know for
sure that types above x0 do not choose effort e?(x). Then she could reduce the utility

13



v(.|e?(x)) by the constant amount v(x0|e?(x)) − [µ(e?(x))x0 − tP (e?(x)) − c(e?(x))] > 0,
thereby increasing her profit.

Now v(y|e?(x)) = µ(e?(x)).y − tP (e?(x))− c(e?(x)) < v0(y) for all x < y, showing that
plaintiff y never chooses effort x.

To prove (ii) of Proposition 7, we proceed by contradiction. Consider any finite set
{e1, . . . , eN} and suppose that all plaintiffs pick their effort in this set. We define xi by
ei = e?(xi). From the proof of Lemma I.1, we know that the defendant makes no offer
greater than µ(ei)xi − tP (ei) after observing ei.

First, we notice that xN = b, otherwise agents whose type x lies between xN and b
would choose effort e?(x) and go to court. For the same reason, all agents between xN−1

and xN = b choose effort eN = e?(b), implying σ(eN |.) = 1 in (xN−1, b]. It follows that
the posterior density f(.|e?(b)) is proportional to the prior distribution f on that interval.
At x = b, the derivative of the defendant’s profit after observing eN = e?(b) is therefore
proportional to that of the defendant profit in the Bebchuk continuation game where all
plaintiffs would choose effort e?(b). The latter derivative is negative by the assumption that
the Bebchuk solution after e?(b) is interior. It follows that the defendant’s profit after e?(b)
is not maximal in a neighborhood of b: there exists y < b such that the defendant makes
no offer greater than µ(e?(b))y − tP (e?(b)) after observing e?(b). It follows the plaintiffs in
(y, b] choose their perfect information effort (and go to court), the desired contradiction.

I.2 Proof of Proposition 8

The proof requires two intermediary lemmas.

Lemma I.2. For any plaintiff type x, effort e?(b) solves the program (8). In other words,
v(x) = v(x|e?(b)) for all x.

Proof. The proof is identical to that of Proposition 2. Note first that v(b) = v(b|e?(b)) =
v0(b). Now suppose that v(x|e?(b)) < v(x) for some x < b. Since the functions v(.|e?(b)) and
v(.) coincide at b, there exists x1 ≤ b such that they coincide at x1 and v is above v(.|e?(b))
on [x, x1). Agents whose type y lies in that interval do not choose e?(b): σ(e?(b)|y) =
0. Noting f(.|e) the density of the posterior distribution (after the defendant’s Bayesian
revision), we therefore have f(.|e?(b)) = 0 on [x, x1). Now we consider two cases, depending
on F (x|e?(b)).

Suppose first that F (x|e?(b)) = 0. It follows that F (x1|e?(b)) = 0. Then we know from
Lemma 3 that v(.|e?(b)) is constant on [a, x1). But this is impossible as v(x1|e?(b)) = v(x1),
v(.|e?(b)) < v(.) on a left neighborhood of x1, and v is nondecreasing.

Consider now the other case: some agents below x choose effort e?(b) with positive
probability and F (x|e?(b)) > 0. We have:

−F (y|e?(b)) +
T (e?(b))
µ(e?(b))

f(y|e?(b)) = −F (x|e?(b)) < 0

for y ∈ [x, x1). The above expression is proportional to the derivative of the defendant’s
profit after observing e?(b). Therefore the defendant’s profit after e?(b) cannot be maximal
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at y and v(.|e?(b)) is affine on [x, x1). More generally, the argument shows that v(.|e?(b))
is affine as long as it is below v(.) and F (.|e?(b)) is positive. It follows that v is everywhere
above v(.|e?(b)) on [a, x1), which contradicts F (x|e?(b)) > 0.

Lemma I.3. The defendant’s profit after e?(b) is maximal at b and its derivative at b is
zero.

Proof. It follows from Lemma I.2 that the defendant’s profit after e?(b) is maximal at b.
Indeed if it were not the case, that profit would not be not maximal on some interval
(y, b], with y < b. The function v(z|e?(b)) would therefore with the segment µ(e?(b))z −
tP (e?(b))− c(e?(b)) on (y, b], which would contradict Lemma I.2, as this segment is strictly
below v0.

Since the defendant’s profit after e?(b) is maximal at b, its derivative at this point is
nonnegative. We now suppose that the derivative is strictly positive and get a contradiction.

If the derivative is positive, the defendant’s profit after e?(b) is not maximal in a left
neighborhood of b and, consequently, the function v(.|e?(b)) is affine on this neighborhood.
This implies that v(.|e?(b)) is strictly above v0 (by Lemma I.2).

We now show that, in such a configuration, any type in that neighborhood necessarily
chooses effort e?(b) with certainty. Suppose indeed that some plaintiff x in that neigh-
borhood chooses effort e?(y), x ≤ y < b, with positive probability. We would have: (i)
v(x|e?(y)) = v(x|e?(b)); (ii) v(y|e?(y)) = v0(y) < v(y|e?(b)); (iii) v(.|e?(b)) ≥ v(.|e?(y))
everywhere by Lemma I.2; (iv) v(.|e?(b)) affine around x. These four properties are incom-
patible with the convexity of v(.|e?(y)). It follows that all plaintiffs in a neighborhood of b
choose e?(b) with probability one.

But this, again, is impossible, as the defendant profit after e?(b) would have the same
derivative at b as the Bebchuk profit after e?(b), implying that b cannot be optimal after
e?(b) (we have assumed that the Bebchuk game has no corner solution). It follows that the
derivative of the defendant’s profit after e?(b) evaluated at b is zero.

From Lemma I.3, we have:

−F (b|e?(b)) +
T (e?(b))
µ(e?(b))

f(b|e?(b)) = 0.

Using Bayes rule and σ(e?(b)|b) = 1 yields:

−1 +
T (e?(b))
µ(e?(b))

f(b)
Proba(e?(b))

= 0.

This shows that the probability of observing e?(b) is f(b)T (e?(b))/µ(e?(b)), which is lower
than one from the assumption that the Bebchuk offer after e?(b) is interior.

15


