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1. Introduction

Copulas were introduced in the literature by Sklar [38] in the 1950s. They were rediscovered in the 1980s and have since
generated a significant stream of academic literature. They have attracted the attention of practitioners, especially due to
their applications in actuarial science, biostatistics, economics, finance, hydrology, etc. By now, they have become a standard
tool in finance and insurance; see, e.g., [5,10].

Copulas are useful tools to model multivariate distributions. They are cumulative distribution functions (cdf’s) on [0, 1]d
for some integer d > 1,with uniformmargins. Basically, copulas allowone to replace a rather complex task (the specification
of a joint cdf) by two simpler ones: the specification ofmarginal distributions and of a dependence structure. For a discussion
of these ideas and many mathematical properties of copula functions, we refer to the books by Joe [17], Nelsen [29],
Embrechts et al. [9], among others. Recent developments in the theory of copulas can be found, e.g., in [6,12,20,22].

One limiting feature of copulas is the difficulty to use them in the presence of multivariate processes, say (Xn)n∈Z, with
Xn ∈ Rd. A common practical problem is to specify the law of this process, possibly through copulas. A first idea would be to
describe the law of the vectors (Xm,Xm+1, . . . ,Xn) for every couple (m, n),m < n. This can be done bymodeling separately
d(n−m+1) unconditional margins plus a d(n−m+1)-dimensional copula. This approach seems particularly useful when
the underlying process is stationary and Markov; see [3] for the general procedure.

Darsow et al. [7] characterized univariate Markov processes induced by copula families. Their work was extended by
Ibragimov [16] in amultivariate framework. Recently, Beare [2] obtained sufficient conditions for geometric rates of mixing.
Unfortunately, the description of the law of the process (Xn)n∈Z, or the simulation of its trajectories, is not significantly
simplified by this two-step procedure when the size of the relevant copula is ‘‘large’’ (i.e., d(m− n+ 1) ≥ 3) and it becomes
impractical for dimensions d > 2.

An alternative approach would be to use information on the marginal processes. This requires us to specify conditional
marginal distributions, instead of unconditional margins as above. This approach is very natural because in practice

∗ Corresponding author.
E-mail addresses: jean-david.fermanian@ensae.fr (J.-D. Fermanian), marten.wegkamp@cornell.edu (M.H. Wegkamp).

0047-259X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2012.02.018



Author's personal copy

20 J.-D. Fermanian, M.H. Wegkamp / Journal of Multivariate Analysis 110 (2012) 19–29

univariate processes are often better known and studied thanmultivariate processes. For instance, financial firms canmodel
and calibrate easily univariate models for individual stock returns, because numerous liquid and reliable quotes exist in the
market. These models are implemented in the information systems of these firms. But typically, it is no more the case when
dealingwith a basket of stocks. Therefore, it is tempting to use ‘‘standard’’ univariate processes as inputs ofmore complicated
multivariate models.

Apart from pricing and hedging of basket derivatives, this problem occurs, e.g., in risk management (joint behavior of
several market factors like stock indices, exchange rates, interest rates, etc.) and in credit portfolio modeling (e.g., the joint
default of several counter-parties). This means that we need to specify, for every j = 1, . . . , d, the law of Xn,j knowing the
past values Xn−1,j, Xn−2,j, . . . of this univariate process. Themain issue is now related to the specification and the estimation
of relevant dependence structures, ‘‘knowing’’ these univariate underlying processes, to recover the entire process (Xn)n∈Z.

Using motivation similar to our second approach above, Patton [32,33] introduced so-called conditional copulas, which
are associated with conditional laws in a particular way. Specifically, let X = (X1, . . . , Xd) be a d-dimensional random
vector from (Ω,A0, P) to Rd. Consider some arbitrary sub-σ -algebra A ⊂ A0. A conditional copula associated to (X,A) is
a B([0, 1]d)⊗ A measurable function C such that, for any x1, . . . , xd ∈ R,

P (X ≤ x|A) = C {P(X1 ≤ x1|A), . . . , P(Xd ≤ xd|A)|A} . (1)

The random function C(·|A) is uniquely defined on the product of the values taken by xj → P(Xj ≤ xj | A)(ω), j = 1, . . . , d,
for every realization ω ∈ A. As in the proof of Sklar’s theorem (see [29]), C(·|A) can be extended on [0, 1]d as a copula, for
every conditioning subset of events A ⊂ A.

In the case of multivariate processes, we deal with vector-valued observations (Xn)n∈Z and we are often interested in the
copula of Xn given An = σ(Xn−1,Xn−2, . . .). Eq. (1) implies that it is necessary to know/model eachmargin, knowing all the
past information (vector-valued observations) and not only the past observations of each particular margin.

Nonetheless, as mentioned above, practitioners often specify and estimate marginal models, especially in a dynamic
framework. It is thus highly desirable to incorporate thesemodels into a full multivariatemodel.With the previous notation,
users often have good estimates of the conditional distribution of each margin, conditionally given its own past, i.e.,
P(Xn,j ≤ xj|An,j), j = 1, . . . , d, by setting An,j = σ(Xn−1,j, Xn−2,j, . . .). And they would like to link these quantities with the
(joint) law of Xn knowing its own past.

It is tempting to write

P (Xn ≤ x|An) = C∗

P(X1,n ≤ x1|An,1), . . . , P(Xd,n ≤ xd|An,d)


(2)

for some random function C∗
: [0, 1]d −→ [0, 1] whose measurability would depend on An and on the An,j, j = 1, . . . , d.

Actually, if the latter function were a copula, then it should satisfy in particular

P

X1,n ≤ x1|An


= C∗


P(X1,n ≤ x1|An,1), 1, . . . , 1


= P(X1,n ≤ x1|An,1),

for every real number x1. Thismeans that as far as predicting the current value of the vector-valuedprocess (Xn) is concerned,
its past values do not provide more information than the past values of the univariate process (X1,n) only. In other words,
the process (X2,n, . . . , Xd,n)n∈Z does not ‘‘Granger-cause’’ the process (X1,n)n∈Z. Obviously, a similar reasoning can be made
for every margin.

The assumption that each variable depends on its own lags, but not on the lags of any other variable, is clearly strong,
even though it can be accepted empirically; see the discussion in [34, pp. 772–773]. In particular, Patton [32] indicates that
‘‘in our empirical application we find that, conditional on lags of the DM-USD exchange rate, lags of the Yen-USD exchange
rate do not impact the distribution of the DM-USD exchange rate’’. Therefore, to fulfill (2), the concept of copula itself has
to be revisited. This is the main purpose of this article.

The remainder of the paper is organized as follows. In Section 2we extend Patton’s definition to cover amuch larger scope
of situations, and prove the equivalent of Sklar’s theorem. Thenwedealwith the nonparametric estimation of pseudo-copula
models and the important problem of goodness-of-fit tests in Section 3. Finally, in Section 4, we provide amodest simulation
study to evaluate the performance of our test statistic.

2. Conditional copulas and pseudo-copulas

A copula is a cdf on [0, 1]d with uniform margins. We will call a pseudo-copula a cdf on [0, 1]d with arbitrary margins.
As we will manipulate these objects in the same way as copulas, and given that they will be compared with the so-called
conditional copulas, we think it is valuable to introduce the term formally.

Definition 1. A d-dimensional pseudo-copula is a function C : [0, 1]d → [0, 1] such that

(a) For every u ∈ [0, 1]d, C(u) = 0 when at least one coordinate of u is zero;
(b) C(1, . . . , 1) = 1;
(c) For every u and v in [0, 1]d such that u ≤ v, the C-volume (see [29, Definition 2.10.1]) of [u, v] is positive.

Invoking the same type of arguments as in Sklar’s theorem (see, e.g., [29]), we get the following result.
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Theorem 1. Let H be a cdf on Rd and let F1, . . . , Fd be d arbitrary univariate cdf’s on R. Assume that for every
x = (x1, . . . , xd), x̃ = (x̃1, . . . , x̃d) ∈ Rd,

Fj(xj) = Fj(x̃j), 1 ≤ j ≤ d ⇒ H(x) = H(x̃). (3)

Then there exists a pseudo-copula C such that

H(x) = C {F1(x1), . . . , Fd(xd)} , (4)

for every x = (x1, . . . , xd) ∈ Rd. C is uniquely defined on Ran F1 × · · · × Ran Fd, the product of the values taken by the Fj.
Conversely, if C is a pseudo-copula and if F1, . . . , Fd are someunivariate cdf’s, then the functionH defined by (4) is a d-dimensional
cdf.

Therefore, when C is a pseudo-copula, the function H , as defined below by (6), will be a valid cdf on Rd, but its margins
can be quite arbitrary (and different from the Fj cdf in general).

Remarks. Obviously, condition (3) is satisfied if the distribution functions Fj are invertible, in particular, if Fj are strictly
increasing. If this condition it not satisfied, the knowledge of (F1(x1), . . . , Fd(xd)) is not sufficient to recover H(x), and then
the concept of pseudo-copulas fails.

Further note that if the pseudo-copula C in Theorem 1 is a (true) copula, then

H(+∞, . . . , xj, . . . ,+∞) = Fj(xj), (5)

for every j = 1, . . . , d and x = (x1, . . . , xd) ∈ Rd, i.e., the marginal distributions of the joint cdf H are Fj, j = 1, . . . , d.
Conversely, if (5) is satisfied and if the functions Fj, j = 1, . . . , d are continuous, then C is a true copula.

Finally, observe that pseudo-copulas should not be confused with quasi-copulas dealt with in the literature (see, e.g.,
Section 6.2 in [29]). Note that the pseudo-copula C above can be extended on [0, 1]d, exactly as in the usual proof of Sklar’s
theorem; see [29].

Proof of Theorem 1. Weprove the result for d = 2 only as the extension to higher dimensions is relatively straightforward.
Consider the function C̄ : [0, 1]2 → [0, 1] defined by

C̄(u, v) = H{F (−1)
1 (u), F (−1)

2 (v)},

where F (−1)
j (u) = inf{t | Fj(t) ≥ u}, j = 1, 2 are generalized inverse functions. Mimicking the proof of Sklar’s theorem, it

is easy to check that C̄ is a pseudo-copula and we just need to prove is that C̄ satisfies (4). In fact,

C̄{F1(x1), F2(x2)} = H{F (−1)
1 ◦ F1(x1), F

(−1)
2 ◦ F2(x2)}

and

H{F (−1)
1 ◦ F1(x1), F

(−1)
2 ◦ F2(x2)} = H(x1, x2),

because Fj(xj) = Fj◦F
(−1)
j ◦Fj(xj) for j = 1, 2 by assumption (3). Thus, the existence of a pseudo-copula is obtained.Moreover,

when C is unique, C = C̄ . From Eq. (4), it is obvious that C is uniquely defined on Ran F1 × · · · × Ran Fd and must be equal
to C̄ . Indeed, if u = F1(x1) = F1(x̃1) and v = F2(x2) = F2(x̃2), then H(x1, x2) = H(x̃1, x̃2) = C(u, v) for every pseudo-copula
C . The converse result is straightforward. �

Now, let us discuss the link between conditional laws and pseudo-copulas. Consider A1, . . . ,Ad and B, some sub-σ -
algebras of A0. For instance, B could be the σ -algebra induced by A1, . . . ,Ad (and that we denote by σ(A1, . . . ,Ad)), but
this is not required. The only restriction on these sub-σ -algebras is that the ‘‘marginal’’ σ -algebras Aj do not provide more
information than the ‘‘global’’ σ -algebra B. That is, we will assume

Assumption (S). For every j = 1, . . . , d,Aj ⊆ B.

For convenience, denote A = σ(A1, . . . ,Ad). We have the following result.

Theorem 2. For any sub-algebras B,A1, . . . ,Ad that satisfy (S), there exists a random function C : [0, 1]d × Ω −→ [0, 1]
such that

P(X ≤ x | B)(ω) = C {P(X1 ≤ x1 | A1)(ω), . . . , P(Xd ≤ xd | Ad)(ω), ω}

≡ C {P(X1 ≤ x1 | A1), . . . , P(Xd ≤ xd | Ad)} (ω), (6)

for every x = (x1, . . . , xd) ∈ Rd and almost every ω ∈ Ω . This function C is B([0, 1]d) ⊗ B measurable. For almost every
ω ∈ Ω, C(·, ω) is a pseudo-copula and is uniquely defined on the product of the values taken by xj → P(Xj ≤ xj | Aj)(ω),
j = 1, . . . , d.
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Proof. The proof is formally identical to that of Theorem 1, replacing distributions with conditional distributions. We check
(3) in this case. For all x = (x1, . . . , xd), x̃ = (x̃1, . . . , x̃d) in Rd and for any arbitrary event ω ∈ Ω ,

P(Xj ≤ xj | Aj)(ω) = P(Xj ≤ x̃j | Aj)(ω), j = 1, . . . , d

implies

P(X ≤ x | B)(ω) = P(X ≤ x̃ | B)(ω).

Assume for convenience that x ≤ x̃. If P(xj < Xj ≤ x̃j | Aj) = 0, then E{P(xj < Xj ≤ x̃j | B)|Aj} = 0 using Assumption (S).
Since the conditional probability is non-negative, we deduce that P(xj < Xj ≤ x̃j|B) = 0. Therefore,

P(X ≤ x | B)− P(X ≤ x̃ | B)
 ≤

d
j=1

P

xj < Xj ≤ x̃j | B


= 0,

as claimed. �

If C is unique, wewill refer to it as the conditional (A,B)-pseudo-copula associatedwithX and denote it by C(·|A,B). In
general, C(· | A,B)—ormore precisely C(· | A,B)(ω)—is not a copula. Rewriting condition (5), C(·|A,B) can be extended
(through Sklar’s theorem) as a true copula almost everywhere if and only if

P(Xj ≤ xj | B) = P(Xj ≤ xj | Aj) a.e. (7)

for all j = 1, . . . , d and x = (x1, . . . , xd) ∈ Rd. This means that B cannot provide more information about Xj than Aj, for
every j. As mentioned above, this is clearly a strong requirement; see the example below. It is closely related to the Granger
causality concept in time series, when B contains Aj plus some other variables (that may or may not cause Xj). In this case,
the constraint (7) can be tested nonparametrically; see, e.g., [14,15,30].

In the sequel, we will use the term conditional copula if C is a true copula only. Patton’s conditional copula corresponds
to the particular case B = A1 = · · · = Ad, for which (7) is clearly satisfied.

Even when (S) is not satisfied, it is still possible to define a conditional (A,B)-pseudo-copula C by setting, for every
u ∈ [0, 1]d,

C(u) = P{X1 ≤ F (−1)
1 (u1|A1), . . . , Xd ≤ F (−1)

d (ud|Ad) | B}, (8)

Obviously, we have set Fj(xj|Aj) = P(Xj ≤ xj|Aj) for j = 1, . . . , d. In such a case, relation (6) only holds on a subset in Rd

(which may vary with ω).
Typically, when we consider a (stationary or not) d-dimensional process (Xn)n∈Z, the previously considered σ -algebras

are indexed by n. In practice, we assume most of the time that they depend on the past values of the process, even if we
could consider theoretically future values or both past and future values in the conditioning subsets. For instance,wemay set
An,j = σ(Xn−1,j, Xn−2,j, . . .) and Bn = σ(Xn−1, . . .). Thus, in general, we are dealing with sequences of conditional copulas
and pseudo-copulas, that depend on some index n and on the past values Xn−1,Xn−2, . . . of the vector-valued process.

When the process (Xn) is k-order Markov, these conditional pseudo-copulas depend on the last k observed values only.
The most common choices for the sub-σ -algebras, especially in finance, are An,j = σ(Xn−1,j) for every j = 1, . . . , d
and Bn = σ(Xn−1). More generally, we could consider An,j = σ {(Xn−1,j ∈ In,j)} for some or every j = 1, . . . , d and
Bn = σ {(Xn−1 ∈ In)}, where the In,j (resp. In) denote some measurable subsets in R (Rd, respectively). For example,
the latter quantities may be some intervals or product of intervals as in [8]. The conditioning subsets could be related
to several lagged values. All these cases may be mixed yielding a large scope of possibilities concerning the choice of
(An,1, . . . ,An,d,Bn).

The following examples show that even in very natural cases, conditional pseudo-copulas may not be copulas.

Example 1. Consider, for instance, the simple stationary bivariate process
Xn = aXn−1 + εn
Yn = bXn−1 + cYn−1 + νn,

for every n ∈ Z, where the sequences of residuals (εn)n∈Z and (νn)n∈Z are independent standard Gaussian white noises. Set
An,1 = σ(Xn−1),An,2 = σ(Yn−1) and Bn = σ {(X, Y )n−1}. After some calculations, one gets

P{Yn ≤ y | (X, Y )n−1 = (x, y)n−1} = Φ (y − bxn−1 − cyn−1) and

P{Yn ≤ y | Yn−1 = yn−1} = Φ

(y − cyn−1)


1 − a2

1 − a2 + b2

 .
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It is clearly impossible to make P(Yn ≤ y | Bn) and C{1, P(Yn ≤ y | An,2)} equal for all triplets (xn−1, yn−1, y) and any
copula C , when it should be true if C were a Bn-conditional copula. In this case, the underlying pseudo-copula is given by

C{u, v|(X, Y )n−1 = (x, y)n−1} = uΦ

Φ−1(v)


1 − a2 + b2

1 − a2
− bxn−1

 .
Example 2. Invoking relation (8), it is easy to encounter pseudo-copulas that are not copulas. For instance, consider the
Gaussian pseudo-copula family

C(u|y∗) = ΦΣ

Φ−1(u1)+ η1(y∗), . . . ,Φ−1(ud)+ ηd(y∗)


,

where Φ denotes the cdf of a standard Gaussian random variable N (0, 1),ΦΣ denotes the cdf of a Gaussian vector with
correlation matrix Σ , whose margins are N (0, 1), and the functions η1, . . . , ηd are arbitrary. The simplest choice of the
latter functions could be some ‘‘index functions’’ ηj(y) = γ⊤

j y, j = 1, . . . , d for vectors γj. A similar construction may be
used to build the Student pseudo-copula family, by replacing Φ (resp. ΦΣ ) by the cdf of a univariate (resp. multivariate)
standard Student distribution.

Example 3. Archimedean pseudo-copulas constitute another example. Let ψ : [0,+∞) → [0, 1] be the generator of
an Archimedean copula. This function is continuous and strictly decreasing. It satisfies ψ(0) = 1, and limx→+∞ ψ(x) = 0.
Kimberling [19] proved thatψ generates a (true) copula in every dimension if and only ifψ is completelymonotone, i.e., iffψ
has derivatives of all orders on (0,+∞)which alternate successively in sign. For conditions needed in a specific dimension,
see [26]. We will impose ψ > 0. Then, an Archimedean pseudo-copula with generator ψ is defined by

C(u|y∗) = ψ{ψ−1(u1)η1(y∗)+ · · · + ψ−1(ud)ηd(y∗)},

for any positive functions ηj.

Example 4. Tail dependencemeasures and,more generally, co-movements of extreme fluctuations of randomvariables and
processes are some of the most important concepts from copula theory in financial and economic applications of copulas.
They can be extended when models are defined through pseudo-copulas. For instance, consider a bivariate random vector
(X1, X2), with margins F∗

1 and F∗

2 . A new concept of lower tail dependence could be defined by

λL = 2 lim
u↓0

P{F1(X1) ≤ u, F2(X2) ≤ u}
P{F1(X1) ≤ u} + P{F2(X2) ≤ u}

= 2 lim
u↓0

C(u, u)

F∗

1 ◦ F−1
1 (u)+ F∗

2 ◦ F−1
2 (u)

,

ifC is the pseudo-copula associated to F1 and F2 (no conditioning here). Unfortunately, sinceλL depends on the (true)margins
F∗

j , the relevance of such an indicator becomes questionable.

Now, we recall a general recipe to build numerous (discrete time) multivariate processes (Xn)n≥1 with time-dependent
copulas.

1. Identify a particular parametric copula family {Cθ , θ ∈ Θ}.
2. Knowing the past observations Xn−1 = (Xn−1,Xn−2, . . .), define a functional relation between θ and Xn−1.
3. Set the d conditional marginal distributions xj → P(Xn,j ≤ xj|An,j), where An,j is a subset of σ(Xn−1). For instance, a

natural choice could be An,j = σ(Xn−1,j), j = 1, . . . , d, but this is not mandatory.
4. The conditional law of Xn is given by

P

Xn ≤ x|Xn−1


= Cθ(Xn−1)


P(X1,n ≤ x1|An,1), . . . , P(Xd,n ≤ xd|An,d)


.

This strategy allows for the analysis of dynamic dependence structures, but by staying in a given copula family. This
natural idea has already been used in the literature; see [32,18,39] among others. In his study of the dependence between
Yen-USD and Deutsche mark-USD exchange rates, Patton [32] assumes a bivariate Gaussian conditional copula whose
correlation parameter follows a GARCH-type model. Jondeau and Rockinger [18] estimate similar models by specifying a
copula parameter that depends linearly on the previously observed joint large deviations. Alternatively, van den Goorbergh
et al. [39] postulate Kendall’s tau is a function of current conditional univariate variances. We refer to Patton [34] for
other references and applications in finance. In risk management particularly, the copula concept is very relevant; see, e.g.,
[21,23–25,28]. Note that Acar et al. [1] have discussed the nonparametric estimation of the function θ above.

In all these cases, only ‘‘true’’ copula families were used, even after conditioning by the past values of the process. It is
then possible to build (often by simulation) multivariatemodels by stating independently and successively themodels ofXn
knowing its past values. Thismethodologyworkswell because it is assumed (more or less explicitly) that P(Xn,j ≤ xj|An,j) =

P(Xn,j ≤ xj|Bn) for all j and xj, as discussed above.
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We see that, although pseudo-copulas have been used implicitly, they have not been introduced properly. We argue
that the previous framework can be revisited: instead of the first two steps, consider conditional (A,B)-pseudo-copulas
and follow the same steps. Unfortunately, the statistician no longer has the freedom to choose all these pseudo-copulas
arbitrarily.

To illustrate this idea, consider again the previous recipe, but now with a bivariate pseudo-copula family (Cθ ). Set
An,j = σ(Xn−1,j), j = 1, . . . , d,Bn = σ(Xn−1). Assume the process is Markov of order 1. Then, we must have

P(Xn ≤ y | Xn−1 = x) = Cθ(x)

P(Xn,1 ≤ y1 | Xn−1,1 = x1), P(Xn,2 ≤ y2 | Xn−1,2 = x2) | Xn−1 = x


,

for all y and x. This implies, for every u ∈ [0, 1] and every x,

u =


Cθ(x) (u, 1 | Xn−1 = x) dPXn−1,2| Xn−1,1=x1(x2).

Clearly, it is difficult to guarantee that a given parametric family (Cθ ) will satisfy such constraints exactly. A solution could
be to exhibit highly flexible families that satisfy these constraints approximately. Another solution would be to work in a
fully non-parametric way, as detailed in Section 3.

3. Estimation and goodness-of-fit testing

One key issue is to state if pseudo-copulas depend really on the past values of the underlying process, i.e., to test their
constancy. This assumption is often made in practice; see, e.g., [4,36]. Here, we estimate non-parametrically conditional
pseudo-copulas, including Patton’s conditional copulas as a special case. We test their constancy with respect to their
conditioning subsets.

For a stationary process (Xn)n∈Z, we restrict ourselves to conditional sub-algebras An and Bn that are defined by a finite
number of past values of the process, typically (Xn−1,Xn−2, . . . ,Xn−p) for some p ≥ 1. Since we will often identify the
random variables and their realizations, the known value of the latter vector will be denoted by y. Obviously, we could set
An,j = σ(Xn−1,j) and Bn = σ(Xn−1), but other specifications are possible, like An,j = σ(Xn−kj,j) for some kj ∈ {1, . . . , p}
and some j = 1, . . . , d.

Here, the sub-indices n are irrelevant due to the stationarity assumption. The dependence of A and B with respect to
past values ywill be implicit hereafter. Formally, we would like to test the null hypothesis

H
(1)
0 : For every y, C(· | A,B) = C0(·),

against

Ha : For some y, C(· | A,B) ≠ C0(·),

where C0 denotes a fixed pseudo-copula function. The null hypothesis means that the underlying conditional (A,B)-
pseudo-copula is in fact a true copula, independent of the past values of the process.

There are other interesting null hypotheses such as

H
(2)
0 : There exists a parameter θ0 such that C(·|A,B) = Cθ0 ∈ C, for every y,

where C = {Cθ , θ ∈ Θ} denotes some known parametric family of pseudo-copulas. We may extend this assumption by
allowing the parameter θ to depend on past values of the process, to test, say,

H
(3)
0 : For some function θ(y) = θ(A,B)we have C(·|A,B) = Cθ(y) ∈ C, for every y,

where C = {Cθ , θ ∈ Θ} denotes a family of pseudo-copulas.
The latter assumption says that the conditional pseudo-copulas stay inside the same pre-specified parametric family of

pseudo-copulas, for different observed values in the past. These three null hypotheses are nested andmay be easily rewritten
when the conditioning subsets contain more than one past observation.

To our knowledge, only parametric copula familiesC whose parameters depend on past values of the underlying process
are considered in the literature. We propose a fully nonparametric estimator of the conditional pseudo-copulas, and derive
its (Gaussian) limiting distribution. This allows us to build some goodness-of-fit test statistics.

Weuse the short-hand notationXn
m for the vector (Xm,Xm+1, . . . ,Xn). Similarly,wewriteXn

m,j = (Xm,j, . . . , Xn,j). Assume
that every conditioning set An,j (resp. Bn) is related to the vector Xn−1

n−p,j (resp. X
n−1
n−p). Specifically, we consider the events

(Xn−1
n−p = y∗) ∈ Bn, with y∗

= (y1, . . . , yp), and (Xn−1
n−p,j = y∗

j ) ∈ An,j, with y∗

j = (y1j, . . . , ypj).
With similar techniques, we could extend the framework so that past values of a given margin are integrated into the

conditioning subset of other margins. Since this necessitates the introduction of alternative estimates and notations would
become tedious, we prefer to concentrate on the most standard situation in practice.

Our nonparametric estimator of the pseudo-copula is based on a standard plug-in technique that requires estimates of
the joint conditional distribution

m(x | y∗) = P

Xp ≤ x | Xp−1

0 = y∗


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and of conditional marginal cdf’s

mj(xj | y∗

j ) = P

Xpj ≤ xj | Xp−1

0,j = y∗

j


, j = 1, . . . , d.

We will use the following set of assumptions.

Assumption (M). The sequence (Xn)n∈Z is stationary and strongly mixing, i.e., there exists a function α(n) defined on N
with α(n) ↓ 0 as n → ∞ and

sup
k

|P(A ∩ B)− P(A)P(B)| ≤ α(n)

for all A ∈ σ(X1, . . . ,Xk) and B ∈ σ(Xk+n,Xk+n+1, . . .) and n is a positive integer. In addition, we assume that for some
0 < δ < 1,

∞
j=1

j2d(p+1)αδ(j) < ∞.

Assumption (R1). The random vector (X1, . . . ,Xp+1) has a bounded density with respect to the Lebesgue measure. The
density of (X1, . . . ,Xp) is bounded away from zero in some open neighborhood of a given vector y∗

∈ Rpd. The vector
(Xp

1,X
p+m
1+m) has a continuous density in some open neighborhood of (y∗, y∗) for every m ≥ 1. The density of Xn,j knowing

An,j is strictly positive at xj = m−1
j (uj | An,j), j = 1, . . . , d, where u = (u1, . . . , ud) denotes some given vector.

Assumption (R2). For each x ∈ Rd,m

x|F−1

1 (t1), . . . , F−1
d (tpd)


with 0 < tj < 1 is twice continuously differentiable in

t ∈ V , where V denotes some open neighborhood of a given pd-dimensional vector

(F1(y11), . . . , Fd(y1d), F1(y21), . . . , Fd(y2d), . . . , F1(yp1), . . . , Fd(ypd)),

and

max
1≤i,j≤pd

sup
t∈V

sup
x

 ∂2

∂ti∂tj
m


x|F−1

1 (t1), . . . , F−1
d (tpd)

 < ∞.

Assumption (K). K (resp. K̄ ) is a probability kernel function on Rpd (Rp, respectively), twice continuously differentiable,
vanishing outside a compact interval and satisfying


vjK(v) dv = 0 for 1 ≤ j ≤ pd (


vjK̄(v) dv = 0 for 1 ≤ j ≤ p,

respectively).

Assumption (B). The sequence of bandwidths hn satisfies 0 < hn → 0, nhpd+2+δ
n → ∞ and nhpd+4

n → 0 as n → ∞, where
δ is as given above. Moreover, the bandwidth sequence h̄n satisfies 0 < h̄n → 0, nh̄p+2+δ

n → ∞ and nh̄p+4
n → 0 as n → ∞,

where δ is as given above.

Actually, we may assume the sequences mhpd+4
n and nh̄p+4

n tend to some non zero constant as in [27]. Then, the limiting
distribution in Theorem 3 would become non centered. Nonetheless, under zero Assumptions H

(1)
0 (or H

(2)
0 ), this would

change nothing because the latter additional term would be zero; see Theorem 3.1 in [27].
Let Fnj be the (marginal) empirical distribution function of Xj, based on the (X1,j, . . . , Xn,j). Set

Kh(x) = h−pdK
x1
h
, . . . ,

xpd
h


, K̄h̄(x) = h̄−pK̄


x1
h̄
, . . . ,

xp
h̄


.

For every x ∈ Rd and y∗
∈ Rpd, we can estimate the conditional distributionm(x | y∗) = P


Xp ≤ x | Xp−1

0 = y∗


by

mn(x | y∗) =
1

n − p

n−p
ℓ=0

Kn(X
ℓ+p−1
ℓ )1(Xℓ+p ≤ x),

where

Kn(X
ℓ+p−1
ℓ ) = Kh{Fn1(Xℓ1)− Fn1(y11), . . . , Fnd(Xℓd)

− Fnd(y1d), . . . , Fn1(X(ℓ+p−1),1)− Fn1(yp1), . . . , Fnd(X(ℓ+p−1),d)− Fnd(ypd)}.

Similarly, for all xj ∈ R and y∗

j ∈ Rp, the conditional marginal cdf’s

mj(xj | y∗

j ) = P(Xpj ≤ xj | Xp−1
0,j = y∗

j )
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can be estimated in a nonparametric way by

mn,j(xj | y∗

j ) =
1

n − p

n−p
ℓ=1

K̄h̄{Fnj(Xℓ,j)− Fnj(y1j), . . . , Fnj(Xℓ+p−1,j)− Fnj(ypj)}1(Xℓ+p,j ≤ xj),

for every j = 1, . . . , d.
We propose to estimate the conditional pseudo-copula byC(u | Xn−p

n−1 = y∗) = mn{m
(−1)
n,1 (u1 | y∗

1), . . . ,m
(−1)
n,d (ud | y∗

d) | y∗
}. (9)

Obviously, we use pseudo-inverse of conditional empirical functions in the latter equation.

Theorem 3. Assume that the Assumptions (B), (K), (M), (R1), (R2) and (S) hold. Then, under H
(1)
0 , for all u ∈ [0, 1]d and

y∗
= (y1, . . . , yp) ∈ Rdp,

nhpd
n {C(u | Xn−p

n−1 = y∗)− C0(u)}
d

−→ N [0, σ (u)]

as n → ∞, where σ(u) = C0(u){1 − C0(u)}

K 2(v) dv.

This result can be extended to deal with different vectors y∗ simultaneously. Moreover, we can consider the null
hypotheses H

(2)
0 and H

(3)
0 , provided we have an estimator of the true parameter that tends to the true value (in probability)

faster than the estimatorsmn and mn,j.

Corollary 1. Assume that the above assumptions hold for q different vectors y∗

k ∈ Rdp, k = 1, . . . , q and that the vector
(Xp

1,X
p+m
1+m) has a continuous density in some open neighborhood of (y∗

k , y
∗

ℓ) for every m ≥ 1, k, ℓ = 1, . . . , q. Then, under
H
(3)
0 and for all u ∈ Rd, we have

nhpd
n {C(u | y∗

1)− Cθ̂1(u), . . . ,
C(u | y∗

q)− Cθ̂q(u)}
d

−→ N [0,Σ(u, y∗

1, . . . , y
∗

q)],

as n → ∞, where

Σ(u, y∗

1, . . . , y
∗

q) = diag

Cθ(y∗

k )
(u){1 − Cθ(y∗

k )
(u)}


K 2(v) dv, 1 ≤ k ≤ q


,

for some consistent estimators θ̂k such that

θ̂k = θ(y∗

k)+ OP(n−1/2), k = 1, . . . , q.

Each kth term on the diagonal ofΣ can be consistently estimated by

σ̂ 2
k (u) = Cθ̂k(u){1 − Cθ̂k(u)}


K 2(v) dv.

Note that, in the corollary above, the limiting correlation matrix is diagonal because we are considering different
conditioning values y∗

1, . . . , y
∗
q but the same argument u. At the opposite, an identical conditioning event but different

arguments u1,u2, . . .would lead to a complex (non diagonal) correlation matrix, as explained in [11].

Proof. Under the above assumptions, Mehra et al. [27] proved that, for every x ∈ Rd and every real number t , we have

P


nhpd
n


mn(x | y∗)− m(x | y∗)


≤ tτx,y∗


→ Φ(t), (10)

whereΦ(t) is the cdf of the standard Gaussian distribution, and

τ 2x,y∗ = m(x | y∗)

1 − m(x | y∗)

 
K 2(v) dv.

Similarly, it follows that
nhp

n

mnj(xj | y∗

j )− Fj(xj | y∗

j )


converges to a Gaussian limit. Since K ≥ 0 (K is a probability density), mn is monotone increasing. Consequently, the
convergence in (10) holds uniformly in the argument t .

Careful inspection of the proofs of Lemmas 3.1 and 3.2 in [27] reveals that

sup
xj∈R

mnj(xj | y∗

j )− Fj(xj | y∗

j )
 → 0,
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in probability, as n → ∞, where we used Fnj(xj) → Fj(xj), in probability, as n → ∞, uniformly in xj, 1 ≤ j ≤ d. The
conditions on Fj and a standard technique (see, e.g., [35, Example 1, p. 7]) implies that

m(−1)
nj (uj | y∗

j ) → F (−1)
j (uj | y∗

j ), (11)

in probability, as n → ∞. The theorem follows immediately from theweak convergence (10), the convergence in probability
(11) and the continuity of the normal distribution. �

As in [11], a simple test procedure may be based on

T (u, y∗

1, . . . , y
∗

q) = (nhpd
n )

q
k=1

{C(u | Xn−p
n−1 = y∗

k)− Cθ̂k(u)}
2

σ̂ 2
y∗
k
(u)

,

for different choices of u and conditioning values y∗

k . Under H
(1)
0 , the term on the right-hand-side tends to a χ2

q distribution
under the null hypothesis.

Note that this test is ‘‘local’’ since it depends strongly on the choice of a single u. An interesting extension would be to
build a ‘‘global’’ test, based on the behavior of the full process

nhpd
n {C(· | Xn−p

n−1 = y∗

k)− Cθ̂k(·)}.

But the task of getting pivotal limiting laws is far from easy, as illustrated in [11]. Most of the alternative GOF test statistics
rely on the (non-smoothed) empirical copula process and are bootstrap-based (see [13] for a survey).Whether some of them
can be adapted in the pseudo-copula framework remains an open question.

In the case of parametric pseudo-copula models Cθ with θ ∈ Θ ⊆ Rq, a semi-parametric estimation procedure can
easily be implemented, as in [3]. Indeed, the log-likelihood can be split still into a part involving a pseudo-copula and a part
involving the marginal distributions. For instance, we can estimate the marginal cdf’s by the functions mn,j above, and find
θ̂ by maximizing (over θ ∈ Θ)

n
k=p

ln τθ

mn,1(Xk,1 | Xk−1

k−p,1), . . . ,mn,d(Xk,d | Xk−1
k−p,d)|X

k−1
k−p


,

with

τθ (u|Xk−1
k−p) =

∂d

∂u1 · · · ∂ud
Cθ (u|Xk−1

k−p).

We leave the study of such a procedure for further research.

4. A small simulation study

We evaluate the power of our test statistics T in the case of a bivariate stationary process (d = 2). We restrict ourselves
to p = 1, i.e., only the last observed value is assumed to influence the dynamics of the dependence between Xn,1 and Xn,2.
The null hypothesis states that the bivariate pseudo-copula of (Xn,1, Xn,2) is independent of the past values (Xn−1,1, Xn−1,2)
and that it is a Gaussian copula, viz.

H0 : C(u|y) = CG(u) for all u ∈ [0, 1]2 and y ∈ R2 for some Gaussian copula CG.

Note that the Gaussian copula above does not depend on y.
The data are generated from the bivariate auto-regressive process

Xn,1 = aXn−1,1 + bXn−1,2 + εn,1,
Xn,2 = bXn−1,1 + aXn−1,2 + εn,2,

where the residuals are standard correlated white noises, with corr(εn,1, εn′,2) = ρδn,n′ for all n and n′. We assume that
a+b < 1 and that ρ = 0.5. The initial vector (X0,1, X0,2) is drawn from the stationary law.We choose a set of past observed
values to set the conditioning arguments y∗

k = (i, j), i, j ∈ {−1, 0, 1}, for 1 ≤ k ≤ 9. This provides a 9-point grid (q = 9 in
the notation of the previous section).

Moreover, to assess the sensitivity of our results with respect to the choice of u, we choose nine different values for
this bivariate vector u = (u1, u2) : u1 ∈ {0.1, 0.5, 0.9}, u2 ∈ {0.0, 0.4, 0.8}. We consider time series of length N . The
bandwidths h and h̄ have been chosen by the standard ‘‘rule of thumb’’ [37], as if we were dealing with the densities of
the ‘‘pseudo-sample’’ (FN,1(Xn,1), FN,2(Xn,2)), n = 1, . . . ,N . All the considered kernels are Gaussian. Since the empirical
standard deviation σ̂ of the two previous marginal distributions are the same, we set

h∗
=

2σ̂
N1/6

, h̄∗
=

σ̂

N1/5
·

Here, with a sample size of N = 5000 points, σ̂ ≃ 0.288, h∗
≃ 0.139 and h̄∗

≃ 0.0524.
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Table 1
Percentages of rejection of H0 at 5% level with N = 5000 and 500 replications (test statistic T ).

(a, b) u
(0.2, 0.1) (0.2, 0.5) (0.2, 0.9) (0.5, 0.1) (0.5, 0.5) (0.5, 0.9) (0.8, 0.1) (0.8, 0.5) (0.8, 0.9)

(0, 0) 10.2 11.4 14.2 13.8 12.0 11.8 10.0 9.2 14.4
(0, 0.2) 89.4 97.2 98.4 99.2 98.6 99.4 99.2 98.4 99.2
(0, 0.4) 99.0 99.8 100.0 100.0 99.8 99.8 99.6 99.6 99.6
(0, 0.6) 99.6 100.0 99.8 100.0 100.0 100.0 100.0 100.0 99.4
(0, 0.8) 99.4 100.0 100.0 100.0 100.0 99.8 100.0 99.8 100.0
(0.3, 0.0) 7.0 6.2 9.2 9.0 10.4 6.2 6.8 7.6 5.6
(0.3, 0.2) 97.2 99.8 100.0 99.8 100.0 100.0 100.0 99.6 100.0
(0.3, 0.4) 99.0 100.0 99.8 100.0 100.0 100.0 99.8 100.0 100.0
(0.3, 0.6) 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.6
(0.6, 0.0) 6.2 4.8 4.0 6.8 3.0 3.8 4.2 4.2 3.2
(0.6, 0.2) 95.8 100.0 99.8 100.0 99.8 100.0 100.0 100.0 99.4
(0.9, 0.0) 5.0 2.6 6.6 2.8 4.2 3.6 2.0 2.4 4.0

Table 2
Percentages of rejection of H0 at 5% level with (a, b) = (0.3, 0.2), for several sample sizes N and 500 replications (test statistic T ).

Sample size u
(0.2, 0.1) (0.2, 0.5) (0.2, 0.9) (0.5, 0.1) (0.5, 0.5) (0.5, 0.9) (0.8, 0.1) (0.8, 0.5) (0.8, 0.9)

200 19.8 41.8 90.2 48.0 23.6 83.6 77.0 63.8 53.2
1000 49.0 92.2 97.2 81.6 80.6 99.0 98.4 99.0 88.4
5000 97.2 99.8 100.0 99.8 100.0 100.0 100.0 99.6 100.0

Table 3
Percentages of rejection of H0 at 5% level with (a, b) = (0.3, 0.0), for several sample sizes N and 500 replications (test statistic T ).

Sample size u
(0.2, 0.1) (0.2, 0.5) (0.2, 0.9) (0.5, 0.1) (0.5, 0.5) (0.5, 0.9) (0.8, 0.1) (0.8, 0.5) (0.8, 0.9)

200 14.4 14.8 14.0 12.0 9.8 8.4 14.0 16.8 10.2
1000 10.4 10.2 10.0 9.2 8.4 7.2 12.0 6.6 5.8
5000 7.0 6.2 9.2 9.0 10.4 6.2 6.8 7.6 5.6

In each case, we calculate the test statistics T (u, y∗) and compare it with the 0.95 quantile of a chi-square distribution
with 9 degrees of freedom. Table 1 provides the proportion of rejection of this test. In average, this proportion is close to
5% of the times when H0 is true (b = 0). More precisely, it is higher for small a, and smaller for high a. Otherwise, the test
rejects the null hypothesis most of the time (for different values b ≠ 0).

We observe that the frequencies of rejection are almost independent of the value of a and that it is slightly increasingwith
b, what is in line with intuition. The performances depend a bit on the chosen argument u. The best ones are obtained for u
values that lie far from the boundaries of the unit square [0, 1]2. This may be due to the well-known bias of kernel estimates
on the boundaries of finite support distributions. Here, the test could surely be improved by modifying our kernels in the
lines of Omelka et al. [31]. Overall, the power of our test seems to be reasonable, keeping in mind the complexity of the test
procedure.

Clearly, to get reliable results, this test procedure must be led with sample sizes larger than several thousand points, as
it is shown in Tables 2 and 3. Of course, as usual in such kernel-based tests, our results depend on the bandwidth choices.
We have observed that the performances of our previous test does not seem to be too sensitive to the choices of h∗ and h̄∗,
when they remain ‘‘reasonable’’. This is particularly true concerning the power of this test.Whenwe ‘‘over-smooth’’ the joint
underlying distribution and ‘‘under-smooth’’ the margins, we tend to falsely reject more frequently the null hypothesis. In
practice, we advise to perform the test T (u, y∗) for several values u and several bandwidth choices.
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