
A top-down approach for Asset-Backed securities: a

consistent way of managing prepayment, default

and interest rate risks.

Jean-David Fermanian ∗

Crest-Ensae

First Draft: 21 July 2008. This Version: 10 June 2011.

Abstract

We define a new approach to manage prepayment, default and interest rate risks simul-

taneously in some standard asset-backed securities structures. We propose a parsimonious

top-down approach, by modeling directly the portfolio loss process and the amortization pro-

cess. Both are correlated to interest rates. The methodology is specified for sequential- and

pro-rata pay bonds (ABS, CMO, CDO of ABS), cash or synthetic. We prove analytical

formulas to price all tranches, under and without the simplifying assumption that amortiza-

tion occurs in the most senior tranche only. The model behavior is illustrated through the

empirical analysis of an actual synthetic ABS trade.
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1 Introduction

The residential mortgage market is traditionally the largest debt sector in most countries. The

development of a strong housing finance market requires the participation of investors who are

willing to hold residential mortgage loans as either whole loans, or in the form of a security. The

best developed housing finance market in the world is that of the United States. It is partly due

to the ability of investment bankers (in conjunction with government agencies) to create securities

backed by a pool of residential mortgage loans that are more appealing for institutional investors

to hold rather whole loans. These securities, referred to as mortgage-backed securities (MBS), were

issued in the 70’s. The process of creating these securities is referred to as securitization. More

specifically, the first MBS issued were mortgage pass-through securities, securities where the cash

flow of the pool of residential mortgage loans (amortization including credit losses, prepayments,

interest after servicing expenses and any guarantee fees) is prorated among the certificate holders.

At those dates, the uncertainty about the cash flow to investors in a mortgage pass-through security

was due to prepayments mainly, i.e. payments different from the (originally scheduled) principal

amortization. In the early 80’s, investment bankers created a different type of MBS. Instead of

distributing the cash flow from the pool of mortgage loans on a pro rata basis, it is now distributed

according to rules for principal (both amortization and prepayments) and interest to different

bond classes (tranches) in the structure. This type of MBS is called a collateralized mortgage

obligation (CMO). With a typical bond class with sequential payments, investors are protected

from prepayment and default by the lower bond classes in the capital structure. By the tranching

process, investors who buy such a bond can benefit from some credit enhancements, depending

on the risk/return profile they wish. Recently, another floor of securitization has appeared, with

CDOs of asset-backed securities (CDOs of ABS). Strictly speaking, they are securitization of pools

of CMO tranches, i.e. “securitization of securitization”, creating highly sophisticated securities and

new modeling challenges.

All the previous products are particular cases of “Asset-backed securities (ABS)”. ABS 1 are

commonly traded in the USA and now in Europe. These financial products are built from large

pools of asset classes: mortgages, home equity loans, commercial loans, student loans, credit cards

etc. In that paper, the two main risks that will be associated with ABS are

• a prepayment risk : some underlying assets can be repaid quicker/slower than expected,
1In that article, the terms MBS and ABS will be used equivalently. Even if our developments are particularly

relevant to pools of credit risky mortgages (subprime loans, for instance), the results can be used and adapted easily
to cover other asset classes.
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inducing a (marked-to-market) loss for investors possibly.

• a default risk : some borrowers may be unable to reimburse some coupons or the principal

of their loans fully.

Beside these typical risks, a more standard (in the Fixed Income world) interest rate risk

applies 2. It is important to note that interest rates have an impact on prepayment and credit

risk too. Indeed, lower interest rates induce some incentives to prepay current loans to enter into

new ones under better financial conditions. Alternatively, when interest rates rise, the weight of

periodic reimbursements will become heavier for weak floating-rate borrowers, pushing them to

bankruptcy. Moreover, it is recognized that Home Price Indices (HPIs) are negatively correlated

with the level of interest rates (see Levin and Davidson, 2008). Thus, when rates go up, HPIs

go down and then Loan-To-Values (LTV) of current loans increase, inducing larger likelihoods of

future default events.

Following some seminal papers in the end of the 80’s (Richard and Roll 1989, Schwartz and

Torous 1989), a significant stream of mortgage-related papers has appeared in the academic and

the professional areas. Surprisingly, this literature has increased largely independently from the

main stream of asset pricing papers. “To some degree derivatives pricing and securitization pricing

evolve as two different trade practices” (Lou, 2007). This is partly due to the particular features

and risks of ABS markets. One one side, some authors try to explain borrower’s behaviors under a

theoretical point of view and to value the underlying prepayment and default options that convey

mortgages (the “optional” approach). On the other side, others have proposed to explain the

duration of mortgages directly by econometric models (the so-called “reduced-form” approach):

Deng (1997), Kariya and Kobayashi (2000), Kariya et al. (2002), among others.

In the literature, most of the authors have tackled prepayment risk and default risk separately.

And the former has retained the attention more frequently than the latter, partly because of the

implicit governmental guarantee of agency mortgages. Nonetheless, it has been recognized for

a long time that prepayment and default are not independent processes. Thus, some authors

have investigated the interaction of prepayment and default decisions: among others, Schwartz

and Torous (1993), Kau, Keenan, Muller and Epperson (1995) under the reduced-form approach,

more recently Sharp et al. (2008), Dunsky and Ho (2007) under the optional point of view.

When dealing with default and prepayment risks simultaneously, the framework of competing
2For instance, the interest rate risk for a fixed coupon MBS is that the price drops as rates increase because of

the differential between the coupon being paid in the MBS and the market rates
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risk models appears naturally: see Deng et al. (2000), Kau et al. (2006) for instance. Therefore,

the mortgage-related literature has applied models and concepts from Survival Analysis. More

recently, the development of credit risk models and stochastic intensities approaches have influ-

enced this stream of the financial literature, as in Lou (2007) or Goncharov (2005). Indeed, as

the latter author said: “After all, from a mathematical point of view nothing precludes one from

interpreting prepayment as a "default" in the intensity-based approach to pricing credit risk.” In

our opinion, the previous credit risk intuition is far from being fully exploited in the ABS world.

Indeed, among the thousands of papers in Credit Risk, only a few have been revisited or adapted

in light of mortgages.

That article is an attempt to fill this gap partly. We propose to borrow some theoretical

concepts from the asset pricing literature in general, and from credit derivatives in particular. We

choose the relatively recent “top-down” approach for the pricing of structured products, CDOs in

particular: Bennani (2005), Schönbucher (2005), Andersen et al. (2008), Giesecke et al. (2010),

among others. Here, the basic idea is to deal with aggregated loss processes instead of trying

to detail numerous individual loss intensities and their dependencies (see Bielecki and Rutkowski

2002, for a complete overview). This seems to be particularly relevant in the case of mortgage

pools that put together thousands of underlying loans. We will state our results in a continuous

time framework. It is rather unusual in the mortgage literature, but is a lot more standard in

asset pricing.

Actually, some authors have already shared our idea of drawing inspiration from credit deriva-

tives models: Lou (2007), Jäckel (2008), Garcia and Goossens (2008a, 2008b)... But all of them

have adapted the classical Gaussian copula model of CDOs to price ABS structures, whose short-

comings are well-known (Lipton and Rennie, 2007). Therefore, they propose a “static” bottom-up

approach, contrary to our “dynamic” top-down model. And none of the authors have obtained the

equivalent of our analytic pricing formulas until now 3.

Therefore, the main advantage of our framework is to state nice closed-form formulas, what is

very rare in the ABS world. Thus, we avoid computationally intensive simulation-based pricing

methods. Of course, the achievement of closed-form solutions requires some restrictions about

the underlying assumptions. Notably, Rom-Poulsen (2007), Collin-Dufresne and Harding (1999)

provide semi-analytical intensity-based formulas, but they deal with prepayment only in a one-

or two factor model respectively. On our side, we propose a parsimonious and consistent way of
3except under the “infinitely” granular assumption, as in Vasicek (2002)
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dealing with the main underlying risks together. It is a new approach in the mortgage/ABS world,

to the best of our knowledge, even if some authors have already understood the benefit of dealing

with mortgage portfolio losses directly. For instance, Gautier (2003) extracts a risk-neutral loss

distribution from market quotes, but no underlying dynamics. Levin and Davidson (2008) propose

a dynamic factor models driven by Home Price Indices and interest rates, but a simulation pricing

scheme only.

Actually, to value CMOs, there exists an alternative to simulations. Indeed, McConnell and

Singh (1993) solve PDEs, by adapting the two-factor methodology of Schwartz and Torous (1989),

under the “rational” prepayment approach (Dunn and McConnell 1981a, 1981b; Stanton 1995,

e.g.). Their techniques are extended and adapted to credit-risky multiclass CMBS by Childs

et al. (1996). Instead of relying on numerical algorithms to solves PDEs, we promote rather

analytical formulas and a reduced-form model in this article. In our opinion, our approach relies

less on borrower behavior assumptions than the “optional” point of view, and is a lot more efficient

numerically (see the discussion in Lou 2007, or Sharp et al. 2008).

As a consequence, we will not try to exhibit an optimal mortgagor behavior in terms of pre-

payment. Paydown risk is aggregated at the portfolio level, and only its dependence on the global

factors in the economy is relevant for us. A proxy of these factors is given by the yield curve itself,

or the risk-free bond prices. Contrary to a large part of the literature that deals with conforming

mortgages 4, default events are the second main source of risk in the structures we consider. It is

particularly the case for structures that contain a large proportion of floating rate notes or that

integrate a lot of low quality debtors (subprimes). Moreover, it is also relevant for continental

European structures where prepayment incentives are a lot weaker than in the USA, partly due

to associated penalties, and where loans are not guaranteed most of the time.

We illustrate our methodology first with the pricing of simple sequential-pay CMOs: credit

losses will be recorded from junior to senior tranches. Payments of principal will follow the

opposite order. Even if overcollateralization can be summarized in the most junior tranche, we

have simplified reality. A lot of complexities that can occur in real deals are not modeled explicitly:

excess spread mechanisms, OC tests, credit triggers, more or less exotic PAC (planned amortization

classes) etc. Here, the idea is rather to show to what extent closed-form formulas can be obtained

in a reasonable framework. Actually, such a scheme is not far from the features of standard

synthetic ABCDS or of the first CDOs of ABS in the market. And we are able to price easily
4implicitly insured by Government Sponsored Enterprises in the USA
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standardized coupon-bearing bonds. Note that our model specification is independent from the

nature or the characteristics of the underlyings. These features will be taken into account through

some aggregated quantities only: expected losses, outstanding principals, expected prepayment

and default rates.

In section 2, we introduce the main ideas and the main equations. They describe the behavior

of the portfolio expected loss process and the random amortization profile. Then, we provide

the relevant closed-form pricing formulas by some change of numeraire techniques, in the case

of a (simple) sequential-pay synthetic structure (section 3) and of a (simple) pass-through cash

structure (section 4). We provide some empirical results and a sensitivity analysis of the model with

respect to (w.r.t.) its parameters in section 5. These results will be stated under the assumption

that the most senior tranche of the capital structure only will be hit by amortized and prepaid

amounts (assumption (A)). The latter assumption, that was reasonable before the “subprime”

crisis, can be questioned from that time. Therefore, we generalize significantly our results by

removing the assumption (A) in the appendix B. There, we prove semi-analytical formulas for

sequential or pro-rata pay ABS structures, cash or synthetic.

2 A top-down pricing model

In a top-down framework, we do not try to fully use loan-per-loan information: age and gender

of borrowers, geographical area, Loan-To-Value, maturity and size of loans, financial strengths

as provided by some scores (FICO)... We prefer to restrict the potentially huge information

set to a few “information summaries” that will be sufficient to price the deal. Particularly, the

expected amortization profile is a crucial element for an ABS deal. Then, a random process is built

around the latter profile to take into account the uncertainty of principal paydowns. Similarly, the

underlying default risk will be tackled by the expected loss random process of the whole portfolio.

Both processes will be correlated with each other, and with the yield curve.

Therefore, the pricing procedure will be based on three random processes. In practical terms,

our approach will be a lot cheaper than managing thousands of individual loan descriptions and

their interdependencies inside micro-econometric models. These models have been put in place

in the last years among the most advanced dealers. Some of them are offered for sale but some

specialized boutiques 5. Unfortunately, this family of models requires lengthly simulations and
5“Andrew Davidson & Co, Inc” e.g.
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suffers from the “double stochastic” curse: simulation of factors (yield curve paths, Home Price

Appreciation forecasts), and, conditionally on these realizations, simulation of every borrower

behavior in terms of prepayment and default. In fact, in usual MBS/ABS, a loan-per-loan risk

management is clearly costly, due to calculation time and IT constraints particularly, and it is

exposed to a significant model risk. Thus, in that article, we assume the diversification in the

underlying pool is so high that a few number of macro-factors is sufficient to price and risk-

manage the structures we are considering. A consensus among practitioners converges towards

two or three factors 6.

Without a lack of generality, we assume the total principal amount of our pool of assets is one

(million of USD, for instance) at origination. These assets can be any type of ABS that may suffer

from default and/or prepayment, traditionally mortgages. They are pooled and cash flows are

“tranched” as in CMOs. Traditionally, loans are the basic (first level) assets in securitizations, and

ABS bonds constitute the (second level) tranche products. Here, we cover broader situations, like

CDOs of ABS, where ABS bonds themselves are the basic units. To fix the ideas, the tranching

process is related to several detachment points K0 < K1 < . . . < Kp. We set K0 = 0 and

Kp = 1. The bond with the attachment point Kj−1 and the detachment point Kj will be called

the [Kj−1,Kj ] tranche.

As explained in the introduction, the principal amounts of these tranches can be reduced due

to different effects :

• The “natural” amortization process. It is deterministic for every underlying name and de-

duced from contractual terms.

• the prepayment process. It can be seen as a randomization of the previous amortization

profile.

• the loss process. It is due to failures to pay some remaining coupons or principal.

Potentially, all previous effects can reduce a given tranche simultaneously, at least from a

certain time on. For the sake of simplicity, we would like to illustrate our ideas first from an

over-simplified structure. It will be synthetic (no stream of coupons), as in CDS on ABS tranches

(so-called ABCDS). The credit losses will be sequential “from below”. When a loan is liquidated, the

recovered amount is lower than the remaining balance, most of the time. Then, the corresponding
6for example, the slope of the interest curve, an Home Price index, and possibly the unemployment rate, as in

Patruno et al., 2006.
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loss reduces the most junior tranche [0,K1] first. When the latter has gone fully through, credit

losses attack the subsequent tranche [K1,K2], etc. Finally, the principal paydown (due to “normal”

amortization, prepayment or loss recovery) will be recorded sequentially “from the top”: it reduces

the most senior tranche [Kp, 1] first. When this tranche has disappeared, subsequent payments

reduce the tranche [Kp−1,Kp] and so on. Independently, all these assumptions are reasonable and

are met in reality in some ABS-type securities. Nonetheless, it is rare to meet all of them into a

single security. Strictly speaking, the products we have detailed can be called “synthetic sequential-

pay CMO tranches”. We think they will constitue a good example of the pricing technique we

promote. Further extensions will be provided afterwards: coupon-bearing structures (section 4),

pro-rata payments (appendix B). We are convinced our methodology is able to manage a lot more

products, even if closed-form formulas can become involved technically.

For the moment, we do not have to take care about coupon payments, and complex waterfall

rules more generally. Note that these payment rules may correspond to the simplest usual spec-

ification of a synthetic CDO of ABS. In such a product, the underlyings are some ABCDS. No

initial fund is necessary to invest in such a structure. The cash flows are coming only from prin-

cipal paydowns and defaults. The main price driver is here default risk, likewise usual synthetic

corporate CDOs. The price of CDOs of ABS is very difficult to evaluate. These exotic products

have been put under the sunspots during the credit crisis in 2007− 2010. They have concentrated

criticism, and appeared as icons of the excesses in the exotic credit derivative business.

Now, let us specify our model. At every time t, the outstanding principal of the whole portfolio

will be denoted by O(t) and the outstanding principal of the tranche [0,K] by OK(t). Obviously,

these quantities are random. Let RPt,K and DLt,K be respectively the risky principal and the

default leg that are associated with the “equity” (or junior) tranche [0,K] at time t. The former

quantity is a credit risky duration, but weighted by a fraction of principal. The latter is the mean

amount of credit losses that will be recorded for this particular equity tranche. This terminology

is standard in Credit Derivatives, for the pricing of CDS or synthetic CDOs for instance (see

O’Kane, 2008). For instance, the t-spread st,j of a synthetic CDO tranche [Kj−1,Kj ] is defined

by

st,j{RPt,Kj −RPt,Kj−1} = DLt,Kj −DLt,Kj−1 , (1)

for every t and every j = 1, . . . , p. The same logic applies with ABCDS or CDOs of ABS, for

example. Therefore, the first goal of our model will be to evaluate these risky principals and these
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default legs in closed-form. Indeed, they are sufficient to value the products we consider in this

article.

Let us denote by T ∗ the maturity of our structure. In ABS securitization, the legal final

maturity date T∞ is the last maturity of its pooled mortgages, and T ∗ ≤ T∞ obviously. Actual

life of a securitization is much shorter in practice due to prepayment, early redemption and clean-

up call features 7. Moreover, the maturity associated to securitization of securitization is often

different from the legal maturity. Then, in a pool of 30 year subprime loans, the actual weighted

average life may be 7 years, and T ∗, the maturity of the structure, may be 5 years. Finally, deals

often embed options to call partially or fully outstanding liabilities 8. We will not value such

embedded options, but consider simply that the deal maturity will be T ∗ for sure.

By the standard arbitrage pricing theory and under the equivalent martingale measure Q, we

have

RPt,K = E

[∫ T∗

t

exp

(
−
∫ s

t

ru du

)
OK(s) ds|Ft

]
, (2)

by denoting (rs) the usual short interest rate process. We will denote by Et[·] expectations

conditionally on the market information Ft at time t and under the risk-neutral measure Q. The

filtration (Ft) records all of the past and current relevant information concerning the description of

the cash flows and the underlyings: past payments, contractual features, past and current interest

rates, recorded losses etc.

To fix the ideas, let us denote by A(s) the portfolio amortized amount at time s. Moreover,

let AK(s) be the same amount, but related to the tranche [0,K]. In other words, AK(s) =

[A(s)− (1−K)]
+ in the case of our pure sequential-pay schedule. The latter quantity is the

amount of money the tranche [0,K] has been reduced “from above”, due to the amortization process

only. Actually, since this tranche is reduced potentially “from below” by the default events, the s-

outstanding principal of this tranche is OK(s) = [K − L(s)−AK(s)]
+. Here, we have introduced

L(s), the loss of the whole portfolio at time s. It is simply the accumulated amount that is due

to default events from inception up to s. The same quantity, but related to the tranche [0,K] is

denoted by LK(s). Note that the latter quantity depends on the outstanding principal process of

this tranche, and then on the amortization profile too. This feature complicates the asset pricing
7when the sponsor liquidates the remaining collateral and pay off the notes after pool balance has dropped

significantly, say to 10% of the original principal
8To stimulate the call option, “there is usually a significant step-up in the coupon rate in the event the call is

not exercised. As a result, ABS were commonly priced assuming the call is exercised, as the option is expected to
be deeply in the money at the call date. With the subprime crisis going forward, this assumption has started to be
stressed, however.” (Pénasse, 2008)
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formulas significantly. Moreover, note that the portfolio outstanding principal O(s) is related to

the other quantities by the relation O(s) = 1− L(s)−A(s).

The loss process that refers to the tranche [0,K] can be rewritten LK(s) = L(s).1(L(s) ≤

K − AK(s)), when the tranche [0,K] has not been fully paid down. Otherwise, the amount of

losses is fixed, and keeps its last value (just before this tranche has been fully fed). Thus, we can

write the default leg of the tranche [0,K] as seen at time t:

DLt,K = Et

[∫ T∗

t

exp

(
−
∫ s

t

ru du

)
LK(ds)

]

= Et

[∫ T∗

t

exp

(
−
∫ s

t

ru du

)
1(L(s) +AK(s) ≤ K)L(ds)

]
. (3)

In practice, we need to evaluate the latter integral with some grid of dates T0 = t, T1, . . . , Tp = T ∗.

Therefore, as it is done in practice, we consider that 9

DLt,K '
p∑
i=1

Et

[
exp

(
−
∫ Ti

t

ru du

)
1(L(Ti) +AK(Ti) ≤ K) (L(Ti)− L(Ti−1))

]
,

with a reasonable accuracy. To evaluate the functions RPt,K and ELt,K and thanks to some

elementary algebraic operations, it is sufficient to calculate the expectations

E1(s) = Et

[
exp

(
−
∫ s

t

ru du

)[
K − L(s)− [A(s)− 1 +K]+

]+]
, (4)

E2(s, s̄) = Et

[
exp

(
−
∫ s

t

ru du

)
1{L(s) + [A(s)− 1 +K]+ ≤ K}L(s̄)

]
, (5)

for every couple (s, s̄), t ≤ s̄ ≤ s ≤ T ∗. In the sequel, we will often use s and s̄ as two generic dates

chosen from the set {T1, . . . , Tp}. Particularly, couples of successive dates are necessary, because

increments of losses/amortized amounts have to be considered in our pricing formulas.

Now, we concentrate our efforts on the evaluation of the previous expectations E1(s) and

E2(s, s̄). Unfortunately, these expressions involve some tricky double indicator functions. For the

moment and to lighten the presentation, we assume

Assumption (A): The amortization process and the prepayment process will reduce the most

senior tranche only.

In other words, under (A), we consider only trajectories where the amortization process is
9We neglect accrued payments due to defaults between two successive dates.
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stopped (or the structure is repaid) before the most senior tranche is fully paid back from above.

This assumption implies that AK(t, Ti) = 0 for all dates Ti ≤ T ∗ and for all detachment points

Kj < 1.

Even strong, the assumption (A) can provide a realistic approximation. Indeed, in a lot of

ABS structures, the most junior tranches are often a lot thinner than the most senior tranche.

For example, it is not unusual the latter one is related to more than 90% of total initial portfolio

nominal. Moreover, in practice, these structures are called when the amortization process has

reduced a large part of the pool, typically 90% for clean-up calls. In every case, the assumption

(A) will be removed and more general semi-analytical formulas will be provided in appendix B.

Under (A), instead of E1(s) and E2(s, s̄), we need to evaluate the simpler quantities

E1(s) = Et

[
exp

(
−
∫ s

t

ru du

)
[K − L(s)]

+

]
,

and

E2(s, s̄) = Et

[
exp

(
−
∫ s

t

ru du

)
1{L(s) ≤ K}L(s̄)

]
,

for all tranches except the most senior one. Concerning the most senior tranche, we have to

calculate

E∗1 (s) = Et

[
exp

(
−
∫ s

t

ru du

)
[1− L(s)−A(s)]

+

]
,

and

E∗2 (s, s̄) = Et

[
exp

(
−
∫ s

t

ru du

)
L(s̄)

]
.

The previous expectations E1 and E2 can be deduced from the value of some options that

are written on the loss process L(.). Basically, it is more relevant to work in terms of the (not

discounted) Expected Loss process itself, which is defined by

EL(t, T ) := E[L(T )|Ft] = Et[L(T )].

Indeed, this process is taking into account all forecasts in the market continuously. So, it is more

acceptable to set some diffusion processes on the expected losses rather than on the credit losses

directly. Moreover, this allows to specify a large variety of behaviors depending on the remaining

time to maturity in a consistent way. The effect of time and maturities is strong for MBS/ABS: at

the beginning of a pool, default/prepayment rates are low, due to borrowers selection processes (the
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so-called “seasoning effect”). Then, these rates are usually upward sloping and after some years,

they are decreasing. Indeed, the borrowers with “bad” individual characteristics have already

defaulted/prepaid, and only the relatively safest borrowers stay in the pool (the “burnout effect”).

At last, when the process L is essentially increasing, there is no such constraint on EL, which is

a desirable property in terms of model specification.

Thus, these previous expectations can be rewritten as functions of the Expected Losses them-

selves by noting that L(s) = EL(s, s). For instance,

E1(s) = Et

[
exp

(
−
∫ s

t

ru du

)
[K − EL(s, s)]

+

]
, (6)

and

E2(s, s̄) = Et

[
exp

(
−
∫ s

t

ru du

)
1{EL(s, s) ≤ K}EL(s̄, s̄)

]
. (7)

The latter expectations will be calculated as functions of the spot curve EL(t, ·) and the model

parameters only. From now on, we will consider the Expected Loss process as our underlying.

Similarly, we define the Expected Amortized amount process A(t, T ) by A(t, T ) := Et[A(T )].

Moreover, to evaluate the functions RPt,K and DLt,K , we have to take into account the

randomness of interest rates. Indeed, it has been observed for a long time that the price of

mortgage-backed securities depends strongly on the interest rate curves (e.g. see Boudoukh et

al. 1997), at least through prepayment incentives. But we go further. It is intuitively clear that

default rates themselves depend on interest rates, as explained in the introduction.

Now, we assume that the Expected Loss process is lognormal. Since (EL(·, T )) is a Q-

martingale by definition, its drift is zero. Thus, we do the

Assumption (E): For every times t and T , EL(dt, T ) = EL(t, T )σ(t, T )dWt.

Obviously, (Wt)t∈[0,T ] is an F-adapted Brownian motion under Q. For the moment, we assume

we know the quantities EL(t, ·) at the current time t, as if they were observed in the market. Note

that EL(t, T ) is the sum of the (already) realized credit losses between the inception date 10 and

t, i.e. L(t), plus the expectation of all future losses between t and T . Now, let us deal with the

interest rate process.
10In practice, the underlying loans may have different origination dates for a given bond. This discrepancy is

generally smaller then six months. Thus, we neglect the defaults that could occur between the loan originations
and the bond origination.
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Assumption (IR): Every discount factor B(t, T ) follows the dynamics

B(dt, T )

B(t, T )
= (...)dt+ σ̄(t, T )dW̄t,

for every T and t ∈ [0, T ]. Here, (W̄t) is an F-adapted Brownian motion underQ, and E[dWt.dW̄t] =

ρdt.

Thus, a single factor is describing the whole interest curve dynamics. Even restrictive, this as-

sumption is sufficient in this “toy” model, and it could be weakened easily. There exist several ways

of specifying the previous volatility functions. Since the underlying borrowers are numerous, we

are closed to the infinitely granular hypothesis and the EL paths will be considered as continuous.

So, when the time t tends to any horizon T , the Expected Loss EL(t, T ) trajectories will remain

continuous and σ(t, T ) tends towards a nonzero constant. This implies that the volatility σ(t, T ) is

surely a decreasing function of t. In practice, we could assume that σ(t, T ) = σ0(T − t)α, for some

unknown constant α ≥ 0. Alternatively, we could decide to set σ(t, T ) = σ0 [exp(λ(T − t))− 1] ,

with some positive unknown parameters σ0 and λ, as in Gaussian HJM-type models.

Obviously, we could assume the same type of specifications for the volatility of the discount

factors themselves, for instance σ̄(t, T ) = σ̄0

[
exp(λ̄(T − t))− 1

]
.

Similarly, we can tackle the amortization/prepayment process A(t, T ), that will be assumed

lognormal.

Assumption (AM): For every times t and T , A(dt, T ) = A(t, T )τ(t, T )dW̃t, where (W̃t) is

an F-adapted Brownian motion under Q, and E[dW̃t.dW̄t] = ρ̃dt.

The volatility behavior of the amortization process A(t, T ) can be dealt as the one of the

Expected Loss. Thus, for example, we could state τ(t, T ) = σ̃0

[
exp(−λ̃(T − t))− 1

]
, for some

positive constants σ̃0 and λ̃. Moreover, the lognormal specification does not prohibit some surpris-

ing features like A(t, s) > 1 or EL(t, s) > 1 for some dates (s, t) and with some (small) probability.

Theoretically, such events are unlikely, even if excess spread mechanisms could generate paths with

negative amortization in practice. Actually, this apparently annoying feature does not induce is-

sues to price any base tranche with detachment point K < 1. Indeed, in our pricing formulas, the

two processes EL and A will be truncated above by one: see equations (4) and (5). This trun-

cation is taken into account formally in the appendix B. This is even true under the assumption

(A) (see equations (6) and (7)), except for the evaluation of the whole portfolio or a super senior

tranche (theorem 3.2, for which there will be a warning). Therefore, for us, the single consequence

13



of the Geometric Brownian Motion assumptions (E) and (AM) is the strictly positive probability

that expected losses and/or amortization are capped at one for some dates in the future, clearly

a rather weak constraint.

It should come as no surprise that the Expected Loss process EL(·, T ) may decrease over

time, for a given time horizon T . Indeed, this process is partly related to some expectations of

future losses and partly to the current realized losses. Future expected losses could become smaller

tomorrow if the market participants become more confident concerning the financial strength of

the borrowers in the pool. Moreover, in the ABS world, it is even possible to recover some realized

losses in the future. Indeed, in some exotic structures, these losses can be temporary, because

they are based on some statistical models and projected cash flows. Therefore, “marked-to-model”

losses can be recorded one day and recovered at least partly afterwards. These temporary losses

are clearly a source of difference with corporate CDOs.

More generally, since we are working with expected quantities, (conditionally on current in-

formation sets), there is no theoretical reason for imposing any ordering between EL(t, T ) and

EL(t′, T ′), t 6= t′ and T 6= T ′, and similarly between A(t, T ) and A(t′, T ′). In practice, such

random quantities will fluctuate around the current corresponding expected curves EL(t, ·) and

A(t, ·). Even if the latter curves are increasing w.r.t. T for instance, it is not guaranteed that such

a property will remain for future dates t′ > t in general and any random path. Nonetheless, due

to the definition of these processes, it has not to be considered as a weakness of the model.

3 Pricing formulas of a synthetic ABS

Now, we are able to evaluate the risky principals and the default legs of our simple ABS, with the

previous toy model. Recall that the value of a synthetic ABCDS, a tranche [Kj−1,Kj ], is given 11

by

PVt = st,j{RPt,Kj
−RPt,Kj−1

} −DLt,Kj
+DLt,Kj−1

.

As explained above, it is sufficient to evaluate the previous expectations E1 and E2. Instead

of brute-force calculations, it is simpler to invoke change of numeraire techniques: for every time

s, we will be working under the underlying s-Forward neutral probability Qs. Let us introduce

the quantity νt,s̄,Qs = ρσ(t, s̄)σ̄(t, s), that will appear several times in the sequel. We prove in the

appendix A.1:
11see Pénasse (2008), for instance
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Theorem 3.1 Under the assumptions (A), (E) and (IR), for every couple (s, s̄), t ≤ s̄ ≤ s, we

have

E1(s) = B(t, s) exp

(∫ s

t

ρσ̄(u, s)σ(u, s) du

)
Put (EL(t, s),K∗s , σ(., s), s− t) ,

where Put(Fwd, Strike, V ol, Maturity) denotes the usual Black-Scholes formula of an European

Put (zero interest rates), and K∗s = K exp
(
−
∫ s
t
νu,s,Qs du

)
. Moreover,

E2(s, s̄) = B(t, s)EL(t, s̄) exp

(∫ s̄

t

ρσ̄(u, s)σ(u, s̄) du

)
· Φ

([
ln(

K

EL(t, s)
)−

∫ s̄

t

σ(u, s)σ(u, s̄) du+
1

2

∫ s

t

σ2(u, s) du

]
/(

∫ s

t

σ2(u, s) du)1/2

)
.

Then, the risky principal of the tranche [0,K] with K < 1, is RPt,K =
∫ T∗

t
E1(s) ds, and its

default leg is DLt,K '
∑p
i=1 [E2(Ti, Ti)− E2(Ti, Ti−1)].

Note that the integrals from t and s̄ above can be considered equivalently from t and s. Indeed,

by assumption, s̄ ≤ s and, obviously, σ(u, s̄) = 0 if u > s̄.

Now, we have to price the most senior tranche. It is sufficient to evaluate the quantities

E∗1 (s) = B(t, s)Et,Qs

[
(1− EL(s, s)−A(s, s))+

]
,

and

E∗2 (s, s̄) = B(t, s)Et,Qs [1{EL(s, s) +A(s, s) ≤ 1}EL(s̄, s̄)] .

Formally, these expressions will be calculated in appendix B, in a semi-analytical way. By ne-

glecting the likelihood of the event {EL(s, s) + A(s, s) > 1} 12, we can find simple closed-form

formulas.

Theorem 3.2 Under the assumptions (A), (E), (IR) and (AM), for every couple (s, s̄), t ≤ s̄ ≤ s,

we have

E∗1 (s) ' B(t, s)

[
1−A(t, s) exp

(
ρ̃

∫ s

t

τ(u, s)σ̄(u, s) du

)
− EL(t, s) exp

(
ρ

∫ s

t

σ(u, s)σ̄(u, s) du

)]
,

(8)

E∗2 (s, s̄) = B(t, s)EL(t, s̄) exp

(
ρ

∫ s̄

t

σ(u, s̄)σ̄(u, s) du

)
. (9)

12This approximation may be poor. For instance, consider the following realistic choice of parameters: T =
5 years, σ(t, T ) = ν(t, T ) = 50%, EL(0, T ) = 30%, A(0, T ) = 50%, ρ̃ = 50%. Then, the probability that
EL(T, T ) + A(T, T ) is larger than one lies around 23%. In this case, we expect biases in the evaluation of E∗

1 (T )
and E∗

1 (T, T ), and we advise to use the formulas stated in the appendix B instead.
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Then, the risky principal of the tranche 0 − 100% (the whole portfolio) is RPt,1 =
∫ T∗

t
E∗1 (s) ds,

and its default leg is DLt,1 '
∑p
i=1 [E∗2 (Ti, Ti)− E∗2 (Ti, Ti−1)] .

See the proof in the appendix A.2. Thus, playing with different risky principals and default

legs, we can apply theorem 3.2 to price a super-senior tranche, under the assumption that the

amortization process will never reduce entirely this tranche before maturity. The price of the

tranche [Kp−1, 1] is then

PVt = s0{RPt,1 −RPt,Kp−1
} −DLt,1 +DLt,Kp−1

(10)

where s0 denotes the spread of this tranche at inception. See also more general formulas in the

appendix B.

Now, to obtain t-prices of tranches and apply the previous results, it is sufficient to evaluate

the t-spot Expected Losses EL(t, T ) and, for the most senior tranche, the Expected amortized

amount A(t, T ) (theorems 3.1 and 3.2). Since they are not observed directly in the market, we

have to make additional assumptions concerning the shape of the t-current profile T 7→ E(t, T ).

For example, we could state that, with a constant rate θt > 0, we have

EL(t, dT ) = θt.Et[O(T )]dT.

This constant θt has the status of a constant default rate, even if it is related to some expectations

of losses. Note that the previous relation induces a feedback of losses towards the amortization

process A(., .) through O(., .).

Formally, we could deal with the amortization process as with the Expected Loss process

itself. For the moment, we have just to evaluate A(t, T ) knowing the information at time t. We

will assume that

A(t, dT ) = [ξt,T + bt].Et[O(T )]dT,

where ξt,T is the theoretical amortization rate at time t for the T maturity, and bt is a constant risk

premium. The former quantity is the time T rate of the portfolio principal, assuming there will be

no prepayments between T and T+dT . It may be deduced from the planned amortization schedule

of the surviving assets in the pool at time T , but as seen at t. The latter quantity is the global

risk premium associated with the amortization process. If ξt,. were a constant, then (ξt,. + bt)

would be the t-amortization rate, and bt could be seen as the so-called “Constant Prepayment
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Rate” (evaluated at time t). The constancy of bt and θt has just been made for convenience. It is

straightforward to extend our results to deal with time-varying but deterministic term structures

of prepayment and default rates.

It is well-known that prepayment incentives increase when interest rates fall. Such a feature

can be taken into account in two ways. First, through the correlation level ρ̃ between the moves

of B(·, T ) and A(·, T ) (see the assumptions (IR) and (AM)), our specification induces quicker

amortization when rates go up (ρ̃ ≥ 0). It is true for any random trajectory. This is even true

when we update our (spot) amortization profiles after a sudden move of the current discount

factors. To be specific, if ∆W̄t = Wt+∆t −Wt > 0 and ∆t << 1, then it is reasonable to state

that the expected amortization profile is given now by A(t + ∆t, T ) = A(t, T )(1 + τ(t, T ))ρ̃∆W̄t

for every T . Therefore, it is possible to estimate the sensitivities of our prices (or our spreads)

w.r.t. changes in the discount factors. This can be done analytically when the process A appears

in the pricing formulas 13. Second, as we said, the amortization speed bt is similar to a constant

prepayment rate. When rates go up, this trader input can be updated. Even if such a “manual

update” is not model-driven, this is in line with the current practice in the market.

Note that our model takes into account the full description of theoretical cash flows through

the knowledge of A(t, v), v ≥ t. It means we do not make any simplifying assumptions concerning

the shape of the amortization, contrary to a lot of papers in the literature. It is classical to

price “simple exposure” fixed-rate path-through securities, as in Kau et al. (1995), Kariya and

Kobayashi (2000) or Nakamura (2001). In the more complex case of CMOs, McConnell and

Singh (1994) tackle exponentially decreasing exposures. And to price CDOs of ABS, the most

complex products in the ABS-type family, Garcia and Goossens (2008a, 2008b) assume some

ad-hoc monotonic shapes.

Since Et[O(T )] = 1−A(t, T )− EL(t, T ), we deduce

Et[O(dT )] = −A(t, dT )− EL(t, dT ) = −(θt + bt + ξt,T )Et[O(T )]dT,

and therefore

Et[O(T )] = O(t) exp

(
−(θt + bt).(T − t)−

∫ T

t

ξt,u du

)
.

13Under the assumption (A), it is the case for the most senior tranche only. See the formulas in theorem 8, or in
the appendix.
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Finally, we get

EL(t, T ) = EL(t, t) +O(t)θt

∫ T

t

exp

(
−(θt + bt).(u− t)−

∫ u

t

ξt,v dv

)
du. (11)

Thus, at the current time t, the Expected Loss depends only on the “no-default, no-prepayment”

amortization profile and on some constants θt and bt. We have replaced a whole unknown spot

curve EL(t, ·) by a parametrization of this curve, given by (11). Obviously, other choices of spot

EL curves are possible, and could reflect trader’s views on the future trends in the market largely.

Note that equation (11) is not contradictory with the assumption (E).

Similarly, we deduce the spot amortization profile, i.e. the curve A(t, ·):

A(t, T ) = A(t, t) +O(t)

∫ T

t

(ξt,u + bt) exp

(
−(θt + bt).(u− t)−

∫ u

t

ξt,v dv

)
du.

Therefore, we have obtained all elements to apply the previous theorems, and then to price

standard synthetic tranches.

4 Pricing of a cash MBS/ABS tranche

To illustrate the potentialities of the method, we apply our model to price coupon-bearing struc-

tures. Consider, as previously, a tranched ABS structure. But now, we have to manage the

additional cash flows that are related to coupon payment rules. Broadly speaking, such a cash

structure differs from the synthetic one in the previous section like a cash CDO differs from a

synthetic CDO. We simplify the picture by assuming that, at some pre specified payment dates,

a fixed or floating coupon rate will be applied to the current outstanding principal of any base

tranche. Then, under this assumption, we are able to calculate tranche prices, by the expected

cash flow method. Formally, cash ABS tranches are similar to amortizing bonds with random

schedules 14.

Consider a given base tranche [0,K]. As previously, principal payments are sequential and

we assume now that coupon payments are “pass-through”: they are split across all tranches and

proportionally to the tranche sizes. Thus, no cash is diverted from some tranche to repay quicker

another one. Since the cash flows are due to coupons payments or principal paydowns, the “ABS
14As a consequence, we do not cover some path-dependent features, for instance credit triggers that would change

the order of priority of coupon payments among tranche, or potentially complex excess spread mechanisms.
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bond” price at time t is given by

Pt = Et

 ∑
i≤p,Ti≥t

exp(−
∫ Ti

t

ru du) {CTi
∆iOK(Ti−1)

+ 1(K ≥ L(Ti−1) +AK(Ti−1)).[AK(Ti)−AK(Ti−1)]}+ exp(−
∫ Tp

t

ru du)OK(Tp)

]
,

where CTi
is the fixed or floating coupon associated with that tranche, whose value is known at

the fixing date just before i.e. at Ti−1, and ∆i is the coverage between Ti−1 and Ti.

First, let us deal with the case of a fixed coupon in a given tranche.

Assumption (FC): For every date Ti, the related coupon rate is the same constant C0. In

other words, CTi = C0 for all indices i.

We consider the case of fixed coupon bonds (or tranches) that are not impacted by amortization

during the whole life of the deal, except at maturity (assumption (A)). To evaluate the bond price,

it is sufficient to calculate the expectations

F1(s, s̄) = Et

[
exp

(
−
∫ s

t

ru du

)
OK(s̄)

]
,

for every times (s, s̄), t ≤ s̄ ≤ s ≤ T ∗. Note that F1(s, s) is exactly the so-called E1(s) (see

equation (4)). With similar arguments as previously, we obtain easily the following result.

Theorem 4.1 Under the assumptions (A), (E), (IR) and (FC), the cash bond price is given by

Pt =
∑

i≤p,Ti≥t

C0∆iF1(Ti, Ti−1) + E1(Tp),

where E1 had been defined in theorem 3.1 and, for every couple (s, s̄), t ≤ s̄ ≤ s,

F1(s, s̄) = B(t, s) exp

(∫ s̄

t

νu,s̄,Qs
du

)
.Put

(
EL(t, s̄),K exp

(
−
∫ s̄

t

νu,s̄,Qs
du

)
, σ(., s̄), s̄− t

)
.

To deal with the most senior tranche, we have to take into account the amortization process

too. To prove simple formulas, we assume in the next theorem that the likelihood of the events

{EL(s, s) +A(s, s) > 1} is negligible. Thus, by mimicking theorem 3.2, we get easily:

Theorem 4.2 Under the assumptions (A), (E), (IR), (AM) and (FC), the cash bond price of the
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whole portfolio (i.e. the tranche [0, 100%]) is given by

Pt =
∑

i,Ti≥t,i≤p

{C0∆iE
∗
3 (Ti, Ti−1) +A∗1(Ti, Ti)−A∗1(Ti, Ti−1)}+ E1(Tp),

where, for every couple (s, s̄), t ≤ s̄ ≤ s,

E∗3 (s, s̄) = B(t, s)

[
1−A(t, s̄) exp

(
ρ̃

∫ s̄

t

τ(u, s̄)σ̄(u, s) du

)
− EL(t, s̄) exp

(
ρ

∫ s̄

t

σ(u, s̄)σ̄(u, s) du

)]
,

(12)

and

A∗1(s, s̄) = B(t, s)A(t, s̄) exp

(
ρ̃

∫ s̄

t

τ(u, s̄)σ̄(u, s) du

)
. (13)

The pricing formulas of theorems 4.1 and 4.2 but without assumption (A) are available in the

appendix B (corollary 2). Let us now deal with the trickier case of floating rate bonds. To fix the

ideas, let us assume that the coupon rate is a standard Libor rate. To add a constant margin to

this rate would be straightforward by applying theorems 4.1 and 4.2.

Assumption (FlC): At every date Ti, the paid coupon rate is corresponding to the Libor

rate at Ti−1, for the same periodicity . We denote CTi = L(Ti−1, Ti).

Now, it is sufficient to evaluate expressions like

F2(s, s̄) = Et

[
exp

(
−
∫ s

t

ru du

)
L(s̄, s)OK(s̄)

]
,

where, as usual, s̄ ≤ s. In the appendix A.3, we prove that:

Theorem 4.3 Under the assumptions (A), (E), (IR) and (FlC), the cash bond price of the [0,K]

tranche is given by

Pt =
∑

i≤p,Ti≥t

∆iF2(Ti, Ti−1) + E1(Tp),

where, for every couple (s, s̄), t ≤ s̄ ≤ s, F2(s, s̄) = F1(s̄, s̄)− F1(s, s̄).

Note that E1 and F1 have been defined in theorems 3.1 and 4.1 respectively. Moreover, by the

same reasoning, we deal easily with the last tranche.

Theorem 4.4 Under the assumptions (A), (E), (IR), (AM) and (FlC), the cash bond price of
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the whole portfolio (i.e. the tranche [0, 100%]) is given by

Pt =
∑

i,Ti≥t,i≤p

{∆iF
∗
2 (Ti, Ti−1) +A∗1(Ti, Ti)−A∗1(Ti, Ti−1)}+ E1(Tp),

where, for every couple (s, s̄), t ≤ s̄ ≤ s, we have F ∗2 (s, s̄) = E∗3 (s̄, s̄)− E∗3 (s, s̄).

Remind that A∗1 and E∗3 have been defined in theorem 4.2. Therefore, we have obtained closed-

form formulas to price simple cash ABS tranches. Note that the formulas above have been stated

under the so-called assumption (A). To remove the latter assumption and to obtain semi-analytical

formulas, see the appendix B.

This treatment of coupons is surely crude. Indeed, these amounts are coming directly from

regularly paid coupons of the surviving loans in the pool. Since the structure of the pool is

changing progressively due to defaults and prepayments, the effective coupon rates are random

and dependent on the amortization process itself. We argue this effect can be captured partly by

assuming a term structure of coupons (fixed or floating). For instance CTi
may be a Libor rate

between Ti−1 and Ti, plus a deterministic spread (function of Ti). Therefore, if we tackle the two

cases of fixed and floating coupon rates, we are able to implement the previous idea of spread term

structures. In theory, it would be possible to model random coupon rates, dependent on all the

other random processes, but this point is left for further research.

5 Illustration: the pricing of a real RMBS

For the sake of illustration, we consider now a real recent trade in light of our valuation model,

under the assumption (A). It is a synthetic European RMBS with a total issued principal around

2 billion euros. The principal paydown is sequential without any interest payments. The maturity

of the structure will be assumed 5 years, even if it is a call date. In other words, we do not try to

evaluate the price of the embedded call option. The underlying loan portfolio has been tranched

into six slices, with detachment points 1%, 3%, 5%, 7%, 10% and 100%. A very wide super senior

tranche is typical of such structures. As usual in our framework, principals will be reimbursed

from the top and default losses recorded from the bottom.

For the moment, assume we want to price and risk manage these tranches at inception. Thus,

no loss has been recorded yet, and no amortization has occurred in the underlying pool. In

practice, our model parameters should be calibrated to some observed tranche prices of current
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or similar structures. Since the liquidity of such deals is very limited, it is usual to invoke some

trader inputs, that would reflect his/her expectations in light of historical data or recent trends.

In our framework, we would like to guess which parameters are the most crucial ones in terms of

calibration. For this purpose, we calculate the present value impacts of some parameter changes.

To simplify, we have assumed that all volatilities we consider are constant over time. Moreover,

to simplify, we have assumed a perfect correlation between the amortization and the interest rates

processes, i.e. ρ̃ = 1. We have led a sensitivity analysis of tranche prices (in terms of par spreads)

with respect to some input parameters: volatility of the Expected Loss, default rate θ, prepayment

rate b, correlation ρ and current loss amount at inception. Figures 1, 2, 3, 4, 5 and 6 summarize

the results. The reference set of parameters is the following one: θ = 0.4%, b = 0.5%, ρ = 30%

and constant volatilities σ0 = 85%, σ̄0 = 1%, τ = 25%.

The most junior part of the capital structure benefits from high Expected Loss volatilities (fig-

ure 1). Indeed, in a fully deterministic framework, such first thin tranche would entirely disappear

before maturity, with our default rate assumption. Therefore, more uncertainty concerning real-

ized losses is good news for the owners of such tranches, all other things being equal. Obviously, it

is the opposite for the owners of the most senior tranches. Mezzanine tranche profiles are humped,

meaning they behave rather like senior tranches under low expected loss volatilities, and rather

like equity ones under higher volatilities.

As expected, par spreads are monotonically increasing functions of the default rates (figure 2).

This relation is almost linear, at least for a wide range of realistic default rates, and even for the

most junior tranches. The latter effect is due to the trade-off between risky principal and expected

loss: with higher default rates, the tranche expected loss is capped when its risky principal will

decrease, so increasing its par spread. For all tranches, par spreads decrease when prepayment

rates increase: see figure 3. Indeed, the spot expected loss curves depend on these rates. The

quicker the payment process is, the smaller the expected losses are in the whole portfolio. This

phenomenon can be observed with all tranches. In the case of the most senior tranche, its risky

principal is reduced significantly by increasing prepayment rates, canceling almost of the latter

expected loss effect. That is why, apparently strangely, the super senior tranche is the less sensitive

tranche w.r.t varying prepayment rates.

Moreover, except for the most senior tranche, the effect of the correlation between amorti-

zation/interest rates and default losses is very weak (figure 4). Indeed, under our assumption

(A), these tranches are not hit by the amortization process. Thus, the latter correlation has an
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influence through the risk free discount factors only. Clearly, this induces a lot smaller effect on

prices than a reduction of tranche principals. At the opposite, the most senior tranche par spread

is an increasing function of the correlation significantly: high correlations increase the likelihood

of higher tranche reduction through the joint effect of default losses and quicker amortization. An

investor requires a higher premium to be covered against the latter risk.

Now, assume that some losses have already been recorded: see figure 5. Here, the most junior

tranches have already been fully or partially reduced, but, since losses can be recovered 15, the

processus can be reversed. Therefore, even when realized losses are higher than 20%, the model

spread of the tranche [0, 1%] is not zero. Actually, it is around 2% of the remaining principal, that

will be zero for most trajectories! This value can be interpreted as the probability of recovering

some part of the most junior tranche before maturity. Note the humped shape behavior of the

par spreads: for a given tranche, the associated par spreads reach their maxima when the realized

losses hit that tranche. After that, as explained above, par spreads decrease but do not reach zero.

Note that the super senior tranche does not exhibit such a profile, because only unrealistic large

realized losses could possibly illustrate this phenomenon for this tranche.

Finally, we have analyzed the effect of the (not risky) interest rates on the tranche prices.

The reference set of parameters is still as above. For convenience, we assume that interest rate

curves are flat. Thus, the (current) short rate rt is the single driver of these curves. In other

words, for any dates t, T , t ≥ T , B(t, T ) = exp(−rt(T − t)). The reference short rate is 3%. In

the figure 6, we observe that all tranche spreads are decreasing functions the current short rate,

except the most risky one. This effect is almost linear and it remains reasonable, except for very

high short rates (several times higher than the spot short rate). Even unlikely, such large changes

are not impossible due to the long maturities of the structured products we consider (most often

several decades). Note that this analysis has been done all other things being equal, i.e. without

updating the amortizing profiles and/or the prepayment parameter bt (see the discussion above in

section 3).

Clearly, a true calibration exercise would be necessary to assess the performances of the model

in practice. This is kept for future research. Nonetheless, some guidelines can be proposed. First,

the key parameter seems to be θ, the "constant default rate", when default risk is the main driver

of such structures (our assumption). And a wide range of prices can be obtained by playing
15this point is a particularity of the ABS sector w.r.t. corporate-based structures. And this point is integrated

in the model through the diffusion specification (EL).
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with this parameter. Thus, θ could play the same role as the implied correlation parameter in a

standard corporate CDO: one θ per tranche is fitted, and this parameter should share the same

status as a price. Second, when prepayment is important and default risk is low, the “constant

prepayment rate” b becomes as important as θ, and both should be calibrated implicitly. Third,

most of the other parameters (volatilities, correlations) could be fitted separately over a set of

similar bonds, possibly historically by using proxies, or from some trader’s views.

6 Conclusion

We have provided a theoretical framework to price and analyze a lot of ABS-type products

(ABCDS, CMOs, CDOs of ABS, subprime bonds etc). By working in a parsimonious “top-down”

model and inspired by this stream of the Credit Derivatives literature, we were able to provide

closed form formulas, or at least semi-analytical formulas, in the case of (simplified) sequential or

pro-rata pay structures. For most of structures that convey amortization, prepayment and default

risks simultaneously, the related markets are poorly liquid. Thus, it would not be reasonable to

propose top-down models with plenty of parameters. They would induce a high risk of “over-

fitting” and a poor risk management. Our specification appears to be a good compromise. We

have taken into account the correlation between the dynamics of the interest rates, prepayment

and basket loss processes in a simple but realistic way. We are convinced that an assumption of

independence between the credit events and interest rate moves, so usual in the credit area, is too

strong here and we have proposed a tractable and parsimonious alternative. Closed-form formulas

are highly valuable. They provide benchmarks without having to build huge IT infrastructure (to

retrieve loan informations, simulate numerous random factors and revaluate portfolios thousands

of times, or to solve complex PDEs). Moreover, they enable an investor to complete portfolio

optimization analyses that would be infeasible otherwise. Indeed, “the most valuable applications

of the closed-form formula lie in the area of portfolio management. For example, the question of

how a portfolio investor such as a depository or a GSE should fund mortgage portfolios is difficult

to answer using Monte Carlo simulation.” (Collin-Dufresne and Harding 1999). Finally, we have

tried to keep a balance between the likelihood of the hypothesis, the number of the underlying

random factors and the calibration issues. We think our approach can be considered as a relative

value tool for arbitrage purpose. It provides an original point of view to compare several tranches

inside the same structure or between similar structures, beside other professional tools.
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The current framework can be extended significantly towards several directions: alternative

specifications in terms of the underlying processes or in terms of spot EL and A curves, addition

of more random factors (Home Price Index), comparison between several default/prepayment

intensities assumptions, inclusion of some triggers or excess spread mechanisms etc. Particularly,

an avenue for further research would be to replace the randomness of the amortized amount A

by the randomness of the prepayment rates b and of the “natural” amortization rate ξt,T . In the

latter rate, it would be possible to integrate loan-per-loan information, and possibly some forecasts

deduced from micro-econometric models.

Our assumptions concerning the waterfalls we consider could appear rather restrictive. Ac-

tually, we are convinced our framework and our formulas could be revisited to price deals with

other principal-pay types and/or interest-pay types: Interest Only or Principal Only 16 bonds,

Planned Amortization Classes (PAC), Targeted Amortization Classes (TAC), triggers that deter-

mine the switch between the sequential and the pro-rata amortization, Z-bonds, etc. Despite the

fact that “the complexity of securitization products has been a major holdback of similar analytics

advancement as in portfolio or structured credit derivatives.” (Lou, 2007), we think a new stream

of research is now open. Hopefully, a lot of (more and more) complex formulas will be proved,

to integrate the multiple features of ABS structures, but by keeping or extending our framework.

In other words, we have proved pricing formulas of some vanilla products, leaving open the way

towards exotic product valuations.
16a PO bond can be seen as a vanilla option written on the process A
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A Proofs under the assumption (A)

A.1 Proof of theorem 3.1.

Under the s-forward neutral probability Qs, the discount factor (B(t, s))t,t≤s process is the nu-

meraire and we have, for all the tranches except the most senior one,

E1(s) = B(t, s)Et,Qs

[
(K − EL(s, s))

+
]
, (14)

and

E2(s, s̄) = B(t, s)Et,Qs [1{EL(s, s) ≤ K}EL(s̄, s̄)] .

A technical issue is coming from the fact we change one probability into another one every

time. Formally, the processes (EL(t, T ))t (for different T ) have not the same laws under all these

probabilities. Actually, only the drifts are changing. It is possible to state explicitly all these

drifts. Remind that the drift of (EL(·, T )) under the risk neutral measure Q is zero. By classical

arguments (see Brigo and Mercurio 2001, e.g.), we obtain: Under the Qs Forward measure, the

drift of the process EL(t, T ) is given by −ρEL(t, T )σ(t, T ) (σQ(t)− σ̄(t, s)) , where σQ is the

volatility of the usual numeraire. Since this usual numeraire is the money market account, it has

no volatility. Thus, σQ(t) = 0 and, for every t, T , the latter drift is

EL(t, T )νt,T,Qs
= ρEL(t, T )σ(t, T )σ̄(t, s). (15)

Therefore, under any Forward neutral probability Qs, the Expected Loss processes are still

lognormal: EL(dt, T ) = EL(t, T ). (νt,T,Qs
dt+ σ(t, T )dWt).

To evaluate the expectation (14), we can invoke the usual Black-Scholes formula:

E1(s) = B(t, s)Et,Qs

[
(K − EL(s, s))

+
]

= B(t, s)Et,Qs

[(
K − EL(t, s) exp

(∫ s

t

νu,s,Qs du−
∫ s

t

σ2(u, s) du/2 +

∫ s

t

σ(u, s)dWu

))+
]

= B(t, s) exp

(∫ s

t

νu,s,Qs
du

)
· Et,Qs

[(
K∗s − EL(t, s) exp

(
−
∫ s

t

σ2(u, s) ds/2 +

∫ s

t

σ(u, s)dWu

))+
]
.

So, we prove the formula for E1(s). To deal with E2(s, s̄), choose now the numeraire EL(·, s̄).
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Under the probability QEs̄ that is induced by this new numeraire,

E2(s, s̄) = B(t, s)Et,Qs [EL(s̄, s̄)].Et,QE
s̄

[1{EL(s, s) ≤ K}] ,

or equivalently

E2(s, s̄) = B(t, s)EL(t, s̄) exp

(∫ s̄

t

νu,s̄,Qs
du

)
.Et,QE

s̄
[1{EL(s, s) ≤ K}] .

But, under the probability QEs̄ , the Expected Loss processes EL(·, s) follows the diffusion equation

EL(dt, s) = EL(t, s). (σ(t, s)σ(t, s̄)dt+ σ(t, s)dWt) .

Then, we obtain an explicit expression for E2(s, s̄). 2

A.2 Proof of theorem 3.2.

Under (A), we have

E∗1 (s) = B(t, s)Et,Qs
[1− EL(s, s)−A(s, s)] , and E∗2 (s, s̄) = B(t, s)Et,Qs

[EL(s̄, s̄)] .

By our change of measure, the processes (EL(t, T )) and (A(t, T )) are no more martingales under

the new measures. Concerning the Expected Loss process, we had already found the Qs-drift

change (see equation (15)). This implies

Et,Qs
[EL(s̄, s̄)] = EL(t, s̄) exp

(∫ s̄

t

νu,s̄,Qs
du

)
= EL(t, s̄) exp

(
ρ

∫ s̄

t

σ(u, s̄)σ̄(u, s) du

)
.

Similarly, we can deal with the amortization process A(., s) as with the Expected Loss process.

Therefore, we have

Et,Qs [A(s, s)] = A(t, s) exp

(
ρ̃

∫ s

t

τ(u, s)σ̄(u, s) du

)
,

so the result. 2
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A.3 Proof of theorem 4.3.

Under the Qs Forward measure, the drift of the process EL(t, s̄) is given by νt,s̄,Qs , with our

previous notations. By some standard conditional expectation arguments, we have

F2(s, s̄) = Et

[
exp

(
−
∫ s̄

t

ru du

)
B(s̄, s)L(s̄, s)∆(s̄, s)OK(s̄)

]
= Et

[
exp

(
−
∫ s̄

t

ru du

)
B(s̄, s)

{
1

B(s̄, s)
− 1

}
OK(s̄)

]
= Et

[
exp

(
−
∫ s̄

t

ru du

)
{1−B(s̄, s)}OK(s̄)

]
= F1,1(s̄, s̄)− Et

[
exp

(
−
∫ s̄

t

ru du

)
Es̄

[
exp(−

∫ s

s̄

ru du)

]
OK(s̄)

]
= F1,1(s̄, s̄)− F1,1(s, s̄). 2

B Semi-analytical formulas without the assumption (A)

In this appendix, we extend our formulas to remove the convenient previous assumption (A).

Now, the amortization process can reduce any tranche, possibly the most senior one. Closed-form

formulas are no longer available, but we can rely on semi-analytical formulas instead. Broadly

speaking, the method is simple: conditionally on the value of the amortization process at some

time horizon, the “base case” formulas apply, by shifting the relevant strikes. Then, an integration

w.r.t. the law of the expected amortized amounts provide the results.

First, let us consider the previous synthetic structure and the evaluation of risky principals

and default legs of all tranches (including the most senior one). Recall that the risky principals

of the equity tranche [0,K] are defined by RPt,K = Et

[∫ T∗

t
exp

(
−
∫ s
t
ru du

)
OK(s) ds

]
, and its

default legs are

DLt,K = Et

[∫ T∗

t

exp

(
−
∫ s

t

ru du

)
1(L(s) +AK(s) ≤ K)L(ds)

]
.

As previously, we cover the case of sequential-pay bonds, for which AK(s) = [A(s) − (1 −K)]+.

But it should be noted that we deal with the case of pro-rata bonds too, for which AK(s) is

a fixed proportion of A(s), as in some stripped pass-through securities. To include these two

reference situations explicitly 17, we assume the repaid principal of the tranche [0,K] at time s

is a deterministic function of the portfolio repaid principal A(s) only: for every K and s, there
17and possibly others of the same type
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exists a function ψK such that

AK(s) := ψK(A(s)) = ψK(A(s, s)).

To price the tranche [0,K], it is sufficient to evaluate all quantities like

E1(s) = Et

[
exp

(
−
∫ s

t

ru du

)
(K − EL(s, s)− ψK(A(s, s)))

+

]
,

and

E2(s, s̄) = Et

[
exp

(
−
∫ s

t

ru du

)
1{EL(s, s) + ψK(A(s, s)) ≤ K}EL(s̄, s̄)

]
,

for every couple (s, s̄), t ≤ s̄ ≤ s ≤ T ∗. Actually, we will calculate first the quantity

F1(s, s̄) = Et

[
exp

(
−
∫ s

t

ru du

)
(K − EL(s̄, s̄)− ψK(A(s̄, s̄)))

+

]
,

when s̄ ≤ s. Indeed, note that E1(s) = F1(s, s). Moreover, F1 is the same as the so-called term

F1 that had been calculated in section 4 under the assumption (A). We will need F1 for pricing

coupon-bearing securities hereafter.

To fix the ideas, at time t, the event A(s̄, s̄) = a will be identical to
∫ s̄
t
τ(u, s̄) dW̃u = w(a), for

some value w(a) that will depend on the spot curve A(t, ·). Clearly,

F1(s, s̄) = B(t, s)Et,Qs

[
(K − EL(s̄, s̄)− ψK(A(s̄, s̄)))

+
]

= B(t, s)Et,Qs

[
Et,Qs

[(K − EL(s̄, s̄)− ψK(a))
+ |A(s̄, s̄) = a]

]
,

and the conditional expectation can be evaluated easily. Here, the conditioning event is

a = A(t, s̄) exp

(
ρ̃

∫ s̄

t

σ̄(u, s)τ(u, s̄) du− 1

2

∫ s̄

t

τ2(u, s̄) du+

∫ s̄

t

τ(u, s̄) dW̃u

)
,

or equivalently ∫ s̄

t

τ(u, s̄) dW̃u = w(a).

But we can break down ∫ s̄

t

σ(u, s̄) dWu = ξs̄

∫ s̄

t

τ(u, s̄) dW̃u + ε,
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where

ξs̄ =
ρρ̃
∫ s̄
t
σ(u, s̄)τ(u, s̄) du∫ s̄
t
τ2(u, s̄) du

, (16)

and ε ∼ N (0, µ2
s̄), by setting

µ2
s̄ =

∫ s̄

t

σ2(u, s̄) du− ξ2
s̄

∫ s̄

t

τ2(u, s̄) du. (17)

Implicitly, note that the variance of ε depends on all the underlying volatility functions and

arguments. Then, under Qs and conditionally on A(s̄, s̄) = a, the random variable EL(s̄, s̄) can

be written

EL(s̄, s̄) = EL(t, s̄) exp

(∫ s̄

t

ρσ(u, s̄)σ̄(u, s) du− 1

2

∫ s̄

t

σ2(u, s̄) du+ ξs̄w(a) + ε

)
,

and

EQs
[(K − EL(s̄, s̄)− ψK(a))

+
]

= Put

(
EL(t, s̄) exp

(∫ s̄

t

ρσ(u, s̄)σ̄(u, s) du− 1

2

∫ s̄

t

σ2(u, s̄) du+ ξs̄w(a) +
1

2
µ2
s̄

)
,

K − ψK(a), µs̄, s̄− t) · 1(K ≥ ψK(a)).

It is sufficient to integrate the latter formula w.r.t. the r.v.
∫ s̄
t
τ(u, s̄) dW̄u to prove the result.

Theorem B.1 Under (E), (IR) and (AM),

F1(s, s̄) = B(t, s)

∫
Put (ELw,K − ψK(a1(w)), µs̄, s̄− t)φ

(
w

(
∫ s̄
t
τ2(u, s̄) du)1/2

)
·1(K ≥ ψK(a1(w)))

(
∫ s̄
t
τ2(u, s̄) du)1/2

dw,

where

ELw := EL(t, s̄) exp

(∫ s̄

t

ρσ(u, s̄)σ̄(u, s) du− 1

2

∫ s̄

t

σ2(u, s̄) du+ ξs̄w +
1

2
µ2
s̄

)
.

Moreover ξs̄ (resp. µs̄) is given by (16) (resp. (17)) and

a1(w) := A(t, s̄) exp

(
ρ̃

∫ s̄

t

σ(u, s̄)τ(u, s) du− 1

2

∫ s̄

t

τ2(u, s̄) du+ w

)
.
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Similarly and by leading the same changes of numeraire as in theorem 3.1, we obtain

E2(s, s̄) = B(t, s)EL(t, s̄) exp

(∫ s̄

t

νu,s̄,Qs du

)
.Et,QE

s̄
[1{EL(s, s) + ψK(A(s, s)) ≤ K}]

= B(t, s)EL(t, s̄) exp

(∫ s̄

t

νu,s̄,Qs
du

)
· Et,QE

s̄

[
Et,QE

s̄

[
1{EL(s, s) + ψK(a2(w)) ≤ K}|

∫ s

t

τ(u, s) dW̃u = w

]]

where

a2(w) = A(t, s) exp

(
ρρ̃

∫ s̄

t

σ(u, s̄)τ(u, s) du− 1

2

∫ s

t

τ2(u, s) du+ w

)
. (18)

Note that the latter function is slightly different from the previous one a1(w). Indeed, under

QEs̄ , the instantaneous drift of A(t, s) is now proportional to ρρ̃σ(t, s̄)τ(t, s). We deduce

Et,QE
s̄

[1{EL(s, s) + ψK(a2(w)) ≤ K}|A(s, s) = a2(w)]

= 1(K ≥ ψK(a2(w))).Φ ({ln(K − ψK(a2(w)))

− lnEL(t, s)−
∫ s̄

t

σ(u, s)σ(u, s̄) du+
1

2

∫ s

t

σ2(u, s) du− ξsw}/µs
)
,

where ξs and µ2
s have been defined above.

Theorem B.2 Under (E), (IR) and (AM), we have

E2(s, s̄) = B(t, s)EL(t, s̄) exp

(∫ s̄

t

νu,s̄,Qs
du

)
·
∫

Φ

(
1

µs
{ln(K − ψK(a2(w)))− lnEL(t, s)−

∫ s

t

σ(u, s)σ(u, s̄) du

+
1

2

∫ s

t

σ2(u, s) du− ξsw}
)
· φ

(
w

(
∫ s
t
τ2(u, s) du)1/2

)
1(K ≥ ψK(a2(w)))dw

(
∫ s
t
τ2(u, s) du)1/2

,

where a2, ξ. and µ. are defined by the identities (18), (16) and (17) respectively.

Corollary 1 Let us consider a base tranche [0,K], K ∈ [0, 1], of a synthetic ABS structure.

Under the assumptions of theorems B.1 and B.2, its risky principal is RPt,K =
∫ T∗

t
F1(s, s) ds,

and its default leg is DLt,K '
∑p
i=1 [E2(Ti, Ti)− E2(Ti, Ti−1)].

To extend fully the results of the previous sections, it remains to tackle the case of cash

structures. The next to last missing building block (to deal floating rate coupons) is

F2(s, s̄) = Et

[
exp

(
−
∫ s

t

ru du

)
L(s̄, s)OK(s̄)

]
,
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But, invoking the same arguments as in the proof of theorem 4.3, we obtain easily

F2(s, s̄) = B(t, s̄)Et,Qs̄ [OK(s̄)]−B(t, s)Et,Qs [OK(s̄)] = F1(s̄, s̄)−F1(s, s̄),

and it is a known quantity. Thus, to evaluate principal paydowns in this case, the two last missing

building blocks are the evaluation of

A1(s, s̄) = Et

[
exp

(
−
∫ s

t

ru du

)
1{EL(s̄, s̄) + ψK(A(s̄, s̄)) ≤ K}AK(s, s)

]
,

and

A2(s, s̄) = Et

[
exp

(
−
∫ s

t

ru du

)
1{EL(s̄, s̄) + ψK(A(s̄, s̄)) ≤ K}AK(s̄, s̄)

]
,

for every couples (s, s̄), t ≤ s̄ ≤ s ≤ T ∗. After some tedious calculations, it can be proved that:

Theorem B.3 Under (E), (IR) and (AM), we have

A1(s, s̄) = B(t, s)

∫
Φ

(
1

µA1

{ln(K − ψK(a3(w)))− lnEL(t, s̄)−
∫ s̄

t

ρσ(u, s̄)σ̄(u, s) du

+
1

2

∫ s̄

t

σ2(u, s̄) du− ξ3w − ξ4w̃}
)
· φρ∗

(
w

vs̄
,
w̃

vs

)
· ψK(a4(w̃))

1(K ≥ ψK(a3(w)))

vsvs̄
dw dw̃,

where φρ∗ denotes the density of a bivariate random vector of standard Gaussian r.v. with corre-

lation parameter ρ∗, and where we have set

ξ3 := ρρ̃

∫ s̄
t
σ(., s̄)τ(., s̄).

∫ s
t
τ2(., s)−

∫ s̄
t
σ(., s̄)τ(., s).

∫ s̄
t
τ(., s)τ(., s̄)∫ s̄

t
τ2(., s̄).

∫ s
t
τ2(., s)−

(∫ s̄
t
τ(., s)τ(., s̄)

)2 ,

ξ4 := ρρ̃

∫ s̄
t
σ(., s̄)τ(., s).

∫ s̄
t
τ2(., s̄)−

∫ s̄
t
σ(., s̄)τ(., s̄).

∫ s̄
t
τ(., s)τ(., s̄)∫ s̄

t
τ2(., s̄).

∫ s
t
τ2(., s)−

(∫ s̄
t
τ(., s)τ(., s̄)

)2 ,

µ2
A1

:=

∫ s̄

t

σ2(., s̄)− ξ2
3

∫ s̄

t

τ2(., s̄)− ξ2
4

∫ s

t

τ2(., s)− 2ξ3ξ4

∫ s̄

t

τ(., s)τ(., s̄),

a3(w) := A(t, s̄) exp

(
ρ̃

∫ s̄

t

τ(u, s̄)σ̄(u, s) du− 1

2

∫ s̄

t

τ2(u, s̄) du+ w

)
,

a4(w̃) := A(t, s) exp

(
ρ̃

∫ s

t

τ(u, s)σ̄(u, s) du− 1

2

∫ s

t

τ2(u, s) du+ w̃

)
,
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v2
s :=

∫ s

t

τ2(u, s) du, ρ∗ :=

∫ s̄
t
τ(., s)τ(., s̄)(∫ s

t
τ2(., s).

∫ s̄
t
τ2(., s̄)

)1/2
·

Note that the previous term A1 involves a two-dimensional integration. At the opposite, the term

A2(s, s̄) is simpler and similar to E2. We prove easily

Theorem B.4 Under (E), (IR) and (AM), we have

A2(s, s̄) = B(t, s)

∫
Φ

(
1

µA2

{ln(K − ψK(a5(w)))− lnEL(t, s̄)−
∫ s̄

t

ρσ(u, s̄)σ̄(u, s) du

+
1

2

∫ s̄

t

σ2(u, s̄) du− ξs̄w}
)
· φ
(
w

vs̄

)
· ψK(a5(w))

1(K ≥ ψK(a5(w)))

vs̄
dw,

where

µ2
A2

=

∫ s̄

t

σ2(., s̄)− ξ2
s̄

∫ s̄

t

τ2(., s̄),

and

a5(w) = A(t, s̄) exp

(
ρ̃

∫ s̄

t

σ̄(., s)τ(., s̄)− 1

2

∫ s̄

t

τ2(., s̄) + w

)
.

Thus, the previous theorems allow us to evaluate cash structures, as described in section 4.

Corollary 2 Under the assumptions (E), (IR), (AM) and (FC) and with our previous notations,

the cash bond price of section 4 is

Pt =
∑
i,Ti≥t

{C0∆iF1(Ti, Ti−1) +A1(Ti, Ti−1)−A2(Ti, Ti−1)}+ E1(Tp).

Under the assumptions (E), (IR), (AM) and (FlC), the related cash bond price is

Pt =
∑
i,Ti≥t

{∆iF2(Ti, Ti−1) +A1(Ti, Ti−1)−A2(Ti, Ti−1)}+ E1(Tp).
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Figure 1: Par spreads of RMBS tranches as a function of Expected Loss volatility
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Figure 2: Par spreads of RMBS tranches as a function of the default rate θ
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Figure 3: Par spreads of RMBS tranches as a function of the prepayment rate b
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Figure 4: Par spreads of RMBS tranches as a function of correlation ρ
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Figure 5: Par spreads of RMBS tranches as a function of the current loss

41



90
%

95
%

10
0%

10
5%

11
0%

11
5%

12
0%

er of the reference par spread

70
%

75
%

80
%

85
%

0%
50
%

10
0%

15
0%

20
0%

25
0%

30
0%

35
0%

40
0%

45
0%

50
0%

Multiplie

M
ul
tip

lie
r o

f t
he

 re
fe
re
nc
e 
sh
or
t r
at
e 
(r=

3%
)

0‐
1%

 
1‐
3%

3‐
5%

5‐
7%

7‐
10
%

10
‐1
00
%

Figure 6: Par spreads of RMBS tranches as a function of the spot short rate (both dimensions are
in relative terms)

42


