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Abstract We state a multidimensional Functional Central Limit Theorem for weakly
dependent random vectors. We apply this result to copulas. We get the weak convergence of
the empirical copula process and of its smoothed version. The finite dimensional convergence
of smoothed copula densities is also proved. A new definition and the theoretical analysis of
conditional copulas and their empirical counterparts are provided.
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1 Introduction

This paper is devoted to asymptotic results relative to the empirical process for weakly
dependent sequences. Various definitions of weak dependence have been introduced in the
literature. Among them, α-mixing and β-mixing have been developed, but these notions are
not fully satisfactory, as they are defined with respect to filtrations and difficult to check in
practice. Doukhan and Louhichi (1999) introduce a definition of weak dependence that is
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easier to check on various examples of stationary processes (see Doukhan 1994). Various
applications and developments of weak dependence are addressed in Ango Nze et al. (2002)
and Ango Nze and Doukhan (2002).

The general notion of weak dependence corresponds to the following idea. Consider two
finite samples with time indices P in the past and in the future F , separated by a gap r .
The independence of P and F is equivalent to cov( f (F), g(P)) = 0 for a suitable class of
measurable functions. A natural way to weaken this condition is to provide a precise control
of these covariances as the gap r becomes larger, and to fix the rate of decrease of the control
as r tends to infinity. Moreover the class of functions will be reduced to Lipschitz functions
to make the weak dependence condition easy to check for a wide class of models.

Section 2 introduces the definition of weak dependence, provides examples and the func-
tional central limit theorem for the multivariate empirical process. Section 2.2.3 is devoted to
applications of the main theorem to copulas processes. The last section contains the proofs.

2 Definitions and main result

2.1 Weak dependence

We state here the definition of weak dependence that is used in the paper and a refinement
of it. Define the Lipschitz modulus of a real function h on a space R

d as

Lip (h) = sup
x �=y

|h(x)− h(y)|
‖x − y‖1

,

where ‖x‖1 = ‖(x1, . . . , xd)‖1 = ∑d
i=1 |xi |. Define �(1) as the set of functions that are

bounded by 1 and have a finite Lipschitz modulus. Declare two sequences of indices
i1 ≤ · · · ≤ iu and j1 ≤ · · · ≤ jv as r -distant if iu ≤ j1 and j1 − iu = r .

Definition 1 (Doukhan and Louhichi, 1999) Let η= (ηr )r≥0 (resp. θ = (θr )r≥0) be a
real positive sequence that tends to zero. We say that the d-dimensional process (ξi )i∈Z is
η-dependent (resp. θ -dependent) if, for any r -distant finite sequences i = (i1, . . . , iu) and
j = ( j1, . . . , jv), for any functions f and g in�(1) defined on (Rd)u and (Rd)v respectively,
we have

|cov( f (ξi1 , . . . , ξiu ), g(ξ j1 , . . . , ξ jv ))| ≤ (uLip f + vLip g)ηr , (1)

|cov( f (ξi1 , . . . , ξiu ), g(ξ j1 , . . . , ξ jv ))| ≤ vLip gθr . (2)

Remark 1 The θ -dependence condition corresponds to causal processes and is more restric-
tive that η-dependence; note that ηr ≤ θr . Mathematical advantages of θ -dependence are
presented in Dedecker and Doukhan (2003). The forthcoming examples will make clear the
differences between the two notions.

Remark 2 Note that if ξ is η-dependent and if f and g are bounded Lipschitz functions, the
previous covariance is bounded by

(uLip ( f )‖g‖∞ + v‖ f ‖∞Lip (g)) ηr .
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2.2 Examples

2.2.1 Stable Markov processes

Consider first stationary sequences satisfying a recurrence equation

Xn = F(Xn−1, . . . , Xn−d , ξn),

where the sequence (ξn) is iid. In this case Yn = (Xn, . . . , Xn−d+1) is a Markov chain such
that Yn = M(Yn−1, ξn) with

M(x1, . . . , xd , ξ) = (F(x1, . . . , xd , ξ), x1, . . . , xd−1).

Consider a norm ‖ · ‖ on R
d , then we set ‖Z‖m = (E‖Z‖m)1/m for m ≥ 1 for any

R
d -valued random variable Z . Stationarity follows from Duflo’s Theorem 1.IV.24 Duflo

(1996) if ‖F(0, ξ)‖m < ∞ and ‖F(x, ξ)− F(y, ξ)‖m ≤ a‖x − y‖ for some real 0 ≤ a < 1
and m ≥ 1. Here θ -dependence holds with θr = O(ar/d) (hence ηr = O(ar/d) too) (as
r ↑ ∞) for the following examples:

– Functional AR models: Xt = r(Xt−1, . . . , Xt−d)+ξt if ‖ξ0‖m < ∞ and |r(u1, . . . , ud)−
r(v1, . . . , vd)| ≤ ∑d

i=1 ai |ui − vi | for some a1, . . . , ad ≥ 0 with
∑d

i=1 ai < 1.

– Branching processes models. Here d = 1, and D ≥ 2. Set ξt = (
ξ
(1)
t , . . . , ξ

(D)
t

)
. Let

now A1(u), . . . , AD(u) be Lipschitz functions (with u ∈ R), and for (u, z(1), . . . , z(D)) ∈
R

D+1 let

M
(

u,
(

z(1), . . . , z(D)
))

=
D∑

j=1

A j (u)z
( j).

L
m-stationarity holds if a = ∑D

j=1 Lip (A j )‖ξ ( j)
0 ‖m < 1.

The following examples are not necessarily Markov models.

2.2.2 Bernoulli shifts

Let H : R
Z → R

d be a measurable function. If the sequence (ξn)n∈Z is independent and
identically distributed on the real line, a Bernoulli shift with innovation process (ξn)n∈Z is
defined as

Xn = H ((ξn−i )i∈Z) , n ∈ Z.

A simple case of infinitely dependent Bernoulli shift is the moving average process, where
the function H corresponds to a series. Assume that there exists a control of the functional
dependence to the tail variables, i.e. a sequence δr decreasing to zero such that:

E

∥
∥H

(
ξ j , j ∈ Z

) − H
(
ξ j 1| j |≤r , j ∈ Z

)∥
∥ ≤ δr , (3)

where ‖ · ‖ is a norm on R
d . Then the process is η-weakly dependent with ηr ≤ 2δ[r/2], see

Doukhan and Louhichi (1999). If H
(
x j , j ∈ Z

)
does not depend on the x j ’s with j < 0, then

the process is causal and θ -dependence holds with θr = δr .
A first example is a Volterra stationary process defined through a convergent Volterra

expansion

Xt = v0 +
∞∑

k=1

Vk;t , Vk;t =
∑

−∞<i1<···<ik<∞
ak;i1,...,ik ξt−i1 . . . ξt−k,
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where v0 denotes a constant and (ak;i1,...,ik )(i1,...,ik )∈Zk are real numbers for each k ≥ 1. This
expression converges in L

m for m ≥ 1, provided that E|ξ0|m < ∞ and
∑∞

k=1
∑

i1<···<ik∣
∣ak;i1,...,ik

∣
∣ < ∞. Those models are η-dependent since (3) is satisfied, δr corresponding to

the tail of the previous series.
The following examples illustrate this general class of models.

2.2.3 LARCH(∞) models

A vast literature is devoted to the study of conditionally heteroscedastic models. A simple
equation in terms of a vector valued process allows a unified treatment of those models, see
Doukhan et al. (2006). Let (ξt )t ∈ Z be an iid sequence of random d × D-matrices, (A j ) j ∈ N∗
be a sequence of D × d matrices, and a be a vector in R

D . A vector valued LARCH(∞)
model is a solution of the recurrence equation

Xt = ξt

⎛

⎝a +
∞∑

j=1

A j Xt− j

⎞

⎠ (4)

We provide below sufficient conditions for the following chaotic expansion

Xt = ξt

⎛

⎝a +
∞∑

k=1

∑

j1,..., jk≥1

A j1ξt− j1 A j2 · · · A jk ξt− j1−···− jk a

⎞

⎠ . (5)

Such LARCH(∞) models include a large variety of models, as

– Standard LARCH(∞) models, correspond to the case of real valued Xt and a j .
– Bilinear model Xt = ζt

(
α+∑∞

j=1 α j Xt− j
)+β+∑∞

j=1 β j Xt− j where the variables are

real valued and ζt is the innovation. For this, we set ξt = (
ζt
1

)
, a = ( α

β

)
and A j =

(
α j
β j

)
.

Expansion (5) coincides with the chaotic expansion in Giraitis and Surgailis (2002).
– GARCH(p, q) models,

{
rt = σtεt

σ 2
t = ∑p

j=1 β jσ
2
t− j + γ + ∑q

j=1 γ j r2
t− j

,

where γ > 0, γi ≥ 0, βi ≥ 0 (and the variables ε are centered at expectation); this

model is a special case of the bilinear model with α0 = γ0
1−∑

βi
et

∑
αi zi =

∑
γi zi

1−∑
βi zi

(see Giraitis and Surgailis (2002)).
– ARCH(∞) processes are given by equations,

{
rt = σtεt

σ 2
t = β0 + ∑∞

j=1 β jσ
2
t− j

.

One sets ξt = ( εt 1 ), a =
(
κβ0
λ1β0

)
, A j =

(
κβ j
λ1β j

)
with λ1 = E(ε2

0), κ
2 = Var (ε2

0).

Endow the sets of matrices with a norm ‖ · ‖ of algebra, derived from a norm for linear
applications. Assume that �= ‖ξ0‖m

∑
j≥1 ‖A j‖ < 1 then one stationary of solution of

eqn. (4) in L
m is given as (5). The solution (5) of eqn. (4) is θ -weakly dependent with

θr =
(

E‖ξ0‖
r−1∑

k=1

k�k−1 R
( r

k

)
+ �r

1 −�

)

E‖ξ0‖‖a‖,
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where R(x) = ∑
j≥x ‖a j‖. There exists some constant K > 0 and b,C > 0 such that

θr ≤
⎧
⎨

⎩
K
(log(r))b∨1

rb
, under Riemaniann decay A(x) ≤ Cx−b,

K (q ∨�)√r , under geometric decay A(x) ≤ Cqx .

2.2.4 Non-causal L ARC H(∞) model

Now A j is defined for j �= 0. Doukhan, Teyssière and Winant (2005) prove the same results
of existence as for the previous causal case (replace summation for j > 0 by summation for
j �= 0) and the process is now η-weakly dependent with

ηr =
⎛

⎝‖ξ0‖∞
∑

0≤2k<r

k�k−1 R
( r

2k

)
+ �r/2

1 −�

⎞

⎠ E‖ξ0‖‖a‖,

where now

R(x) =
∑

| j |≥x

‖a j‖, � = ‖ξ0‖∞
∑

j≥1

‖A j‖ < 1.

Here we need the restrictive assumption that innovations are uniformly bounded.

2.3 Multivariate empirical central limit theorem

The main theoretical result of the paper is a functional central limit theorem for η-dependent
vector-valued sequences (Xi )i∈Z. It is an extension of the independent case, where the limit
process in the space of càdlàg functions D([0, 1]d) endowed with the Skorohod metric dS

is known to be a multivariate Brownian bridge B0, i.e. a Gaussian process with covariance
function

cov(B0(x),B0(y)) = P (X0 ≤ x ∧ y)− P(X0 ≤ x)P(X0 ≤ y), (6)

for every vectors x and y in [0, 1]d . Here the order relation in [0, 1]d is partial: x ≤ y if it
holds for every coordinates and x ∧ y = (xi ∧ yi )i = 1,...,d . In the case of weak dependence,
the limiting distributions are not free of the distribution’s process.

In this section, Y is a process with uniform marginal distributions and cdf F . We denote
the empirical cdf:

Fn(x) = n−1
n∑

i=1

1{Yi,1 ≤ x1, . . . , Yi,d ≤ xd}, (7)

and define the normalized empirical process Bn = √
n(Fn − F) associated with Y. Consider

a centered Gaussian process B such that, for any vectors u and v in R
d ,

cov(B(u),B(v)) =
∑

i∈Z

cov (1{Y0 ≤ u}, 1{Yi ≤ v}) . (8)

Note that the previous covariance structure depends on the joint distribution of Y0 and Yi ,
for every i . We consider a dependence relation based on the covariance of some indicator
functions. The link with the weak dependence is given in Lemma 2.1.
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Definition 2 Let f be a function on R
u , i = (i1, . . . , iu) be a sequence of elements in Z and

s = (s1, . . . , su) be a sequence of elements in [0, 1]d . With implicit reference to a process
Y, we define

Z( f, i, s) = f (1{Yi1 ≤ s1}, . . . , 1{Yiu ≤ su}).

Define a∗
d := d + √

1 + d2 The main result of the paper is the following:

Theorem 1 Assume that (Yi )i∈Z is a centered process with uniform marginal distributions
such that for any r-distant finite sequences i = (i1, . . . , iu) and j = ( j1, . . . , jv), for any
functions f and g in �(1), defined on R

u and R
v:

|cov(Z( f, i, s), Z(g, j, t))| ≤ (uLip f + vLip g)ηr . (9)

Assume that there exist some constants C > 0 and a> a∗
d such that ηr ≤ Cr−a. Then Bn

tends to B in distribution in D([0, 1]d , dS).

See the proof in Sect. 4. The following lemma is essential to apply Theorem 1.

Lemma 2.1 If (Yi )i∈Z is η-dependent (with dependence coefficients ηY,r ), then condition

(9) is satisfied with ηr = 3(ηY,r d)
1
2 .

Proof Define ε-approximations of 1{x ≥ t} by

hε,t (x) =
d∏

p=1

(x (p) − t (p) + ε)

ε
1{t (p) − ε < x (p) < t (p)} + 1{x ≥ t}.

Then hε,t (x) is 1/ε-Lipschitz, and E‖hε,t (Y0) − 1{Y0 ≥ t}‖1 ≤ εd . Define the analogous
approximation of Z( f, i, s) by

Zε( f, i, s) = f (hε,s1(Y1), . . . , hε,su (Yu)).

Let f , g be in �(1) and set for short, ψ = uLip f + vLip g. Then

|E (Zε( f, i, s)Zε(g, j, t))− E (Z( f, i, s)Z(g, j, t))|
≤ ‖Zε( f, i, s)‖∞ E ‖(Zε(g, j, t)− Z(g, j, t))‖1

+‖Z(g, j, t)‖∞ E ‖(Zε( f, i, s)− Z( f, i, s))‖1

≤ (vLip (g)+ uLip ( f ))εd ≤ ψεd.

Similarly,

|E (Zε( f, i, s))E (Zε(g, j, t))− E (Z( f, i, s))E (Z(g, j, t))| ≤ ψεd. (10)

As Y is η-weak dependent with dependence coefficients ηY,r , for any r -distant sequences i
and j,

|cov(Zε( f, i, s), Zε(g, j, t))| ≤ ε−1ψηY,r .

Choosing ε such that ηY,rε
−1 = εd , we get

|cov(Z( f, i, s), Z(g, j, t))| ≤ 3ψ · (ηY,r d)1/2.

Several applications of Theorem 1 are provided by a direct application of the functional
delta-method. We shall consider below the empirical and the smoothed copula processes. �
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3 Applications to copula processes

3.1 Empirical copula processes

Copulas describe the dependence structure between some random vectors. They have been
introduced a long time ago (Sklar 1959) and have been rediscovered recently, especially for
their applications in finance and biostatistics. Briefly, a d-dimensional copula is a cdf on
[0, 1]d whose marginal distributions are uniform. It summarizes the dependence structure
independently of the specification of the marginal distributions.

Consider a random vector X = (X1, . . . , Xd) whose joint cdf is F and whose marginal
cdfs’ are denoted by Fj , j = 1, . . . , d . Then there exists a unique copula C defined on the
product of the values taken by the r.v. Fj (X j ), such that

C(F1(x1), . . . , Fd(xd)) = F(x1, . . . , xd),

for any x = (x1, . . . , xd) ∈ R
d . C is called the copula associated with X. When F is contin-

uous, C is defined on [0, 1]d . If F is discontinuous, there are several choices to extend C to
[0, 1]d (see Nelsen (1999) for a complete theory).

Let (Xi )i∈Z be a vector valued stationary process. The distribution of Xi is independent
of i and we denote by C its copula which we shall estimate nonparametrically. For example,
in the study a real valued stationary Markov sequence (Zi )i∈Z, one may consider the vector
Xi = (Zi ,Zi+1,Zi+2), as in Chen and Fan (2006).

The empirical copula is defined by

Cn(u) = Fn(F
−1
n,1 (u1), . . . , F−1

n,d (ud)),

for every u1, . . . , ud in [0, 1]. As usual, we denote the empirical cdfs’

Fn, j (x j ) = n−1
n∑

i=1

1{Xi, j ≤ x j }, j = 1, . . . , d, (11)

and we use the usual generalized inverse notations, for every univariate cdf G, G−1(u) =
inf{t |G(t) ≥ u}.

In the i.i.d. framework the consistency of Cn and the limiting behavior of n1/2(Cn −C) are
obtained by Deheuvels (1979, 1981) under the strong assumption of independence between
marginals; Gaenssler and Stute (1987) and Fermanian et al. (2004) get rid of this restriction.
Theorem 1 applied to Yi = (F1(Xi,1), . . . , Fd(Xi,d)) yields the extension to dependent data:

Theorem 2 If (Yi )i∈Z is η-dependent, ηn = O(n−a), a> a∗
d , if C has continuous first partial

derivatives, then n1/2(Cn − C) → G in (D([0, 1]d), dS); the Gaussian limit has continuous
sample paths:

G(u) = B(u)−
d∑

j=1

∂C

∂u j
(u)B(v j ), (12)

here v j ∈ [0, 1]d is the vector with components equal to 1 excepted for the j th, equal to u j .

The proof is based on our FCLT, Theorem 1, for multivariate weakly dependent sequences.
Note that the covariance structure of n1/2(Cn − C) relies on both (12) and (8).

Remark 3 The same result applies for sequences such that multivariate FCLT holds. We thus
quote that Theorem 2 still holds under mixing conditions (see examples in Doukhan 2002):
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• for stationary strongly mixing sequences, if αn = O (
n−a

)
for some a > 1; we use Rio

(2000)’s empirical CLT for vector-valued sequences.
• in the absolutely regular case Doukhan et al. (1995)’s result yields assumption
βn = O (

n−1 log−b n
)

for some b > 2.

Other results yielding FCLT are recalled in Doukhan (1994).

In practice, smoothed copulas are preferred for graphical representation. Nonparametric
estimation is often the first step before a parametric modelization. For optimization purposes,
estimates of the derivatives of underlying copulas are useful, e.g. for portfolio optimization
in a mean-variance framework (Markowitz 1952) or with respect to any other risk measure,
estimation of the sensitivities of Value-at-Risk or Expected Shortfall with respect to notional
amounts (Gouriéroux et al. 2000 or Scaillet 2004). The smoothed empirical F̂n the copula
processes in d dimensions writes as:

F̂n(x) =
∫

K ((x − v)/h) Fn(dv)

associated with the usual empirical process Fn (see Eq. 7), where K is the primitive function
of a d-dimensional kernel k subject to the limit condition lim−∞ K = 0, and where h = hn

is a bandwidth. More precisely,
∫

k = 1, hn > 0, and hn → 0 when n → ∞. Similarly, the
j th marginal cdf Fj is estimated nonparametrically by

F̂n, j (x j ) =
∫

K j ((x j − v j )/h) Fn, j (dv j ),

where K j is the primitive function of a univariate kernel k j . We assume for simplicity that the
bandwidth h is the same for every marginal and that k(u1, . . . , ud) = ∏d

j=1 k j (u j ). Then,

for every u ∈ [0, 1]d , the smoothed empirical copula process writes as:

Ĉ (1)
n (u) = F̂n

(
F̂−1

n,1 (u1), . . . , F̂−1
n,d (ud)

)
,

or by smoothing directly the process Cn ,

Ĉ (2)
n (u) =

∫

K ((u − v)/h)Cn(dv).

As in the i.i.d. case, the uniform distance between empirical processes and smoothed
empirical processes is oP (n−1/2) under some regularity conditions. To prove this result, we
need some technical assumption on the kernels:

Assumption (K) Assume k is p times continuously differentiable, and:

• k is compactly supported, or
• there exists a sequence of positive real numbers an such that hnan tends to zero when

n → ∞, and

n1/2
∫

{‖v‖>an}
|k(v)| dv −→ 0.

Moreover, we need:
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Lemma 3.1 Assume (K) and

(i) the process n1/2(Fn − F) is stochastically equicontinuous,
(ii) ‖EF̂n − F‖∞ = o(n−1/2),

(iii) nh2p → 0.

Then ‖F̂n − Fn‖∞ = oP (n−1/2).

See the proof in Sect. 4. Assumption (i) is satisfied when X is compactly supported, invok-
ing Theorem 1. We get assumption (ii) by assuming some regularity on F , e.g. F is p-times
continuously differentiable. Therefore, folllowing the Proof of theorem 10 in Fermanian et al.
(2004), we get:

Theorem 3 Assume (K) and

• the process n1/2(Fn − F) is stochastically equicontinuous,
• (Yi )i∈Z is η-dependent, ηn = O(n−a), a > a∗

d ,
• F is p-times continuously differentiable,
• nh2p → 0.

Then n1/2(Ĉ (1)
n − C) → G in (D([0, 1]d), dS).

This result extends for weakly dependent processes the result on finite dimensional dis-
tributions in Fermanian and Scaillet (2002). Moreover, we can prove Lemma 3.1 replacing
Fn by Cn exactly by the same ways. Hence (see Theorem 11 in Fermanian et al. (2004)):

Theorem 4 Assume (K) and

• (Yi )i ∈ Z is η-dependent, ηn = O(n−a), a > a∗
d ,

• C is p times continuously differentiable, p ≥ 1,
• nh2p

n → 0.

Then ‖Ĉ (2)
n − Cn‖∞ = oP (n−1/2). Hence n1/2(Ĉ (2)

n − C) → G in (D([0, 1]d), dS).

3.2 Weak convergence of kernel copula densities

The limit of copulas is not distribution-free. This is why we also address the question of
copulas densities. They are discussed in a semi-parametric framework (Sect. 3.2). In this
case, limit laws of their finite distributions are asymptotically Gaussian and distribution-
free, after a normalization. Assume each marginal law of the random vector X, say the j th,
belongs to a parametric family {Fj (·|θ j ), θ j ∈ � j }, j = 1, . . . , d . The true parameter is
denoted by θ0

j and the true cdf by Fj (·|θ0
j ) (or simpler Fj ). Usually, marginal distributions are

imposed by users, that like to put their commonly used univariate models into multivariate
ones. Thus, we assume the parameters θ0

1 , . . . , θ
0
d are consistently estimated by θ̂1, . . . , θ̂d .

For convenience, denote F̂j (·) = Fj (·|θ̂ j ) (in this section θs only refer to parameters!). The
semiparametric copula process is

Ĉ(u) = 1

n

n∑

i=1

d∏

k=1

1{Fk(Xi,k |θ̂k) ≤ uk}.

By smoothing this empirical copula process, we get an estimate of the copula density. The
key point is that the asymptotic law of this statistics is far simpler than G. For each index i
the d-dimensional vectors we set

Yi = (F1(Xi,1), . . . , Fd(Xi,d)) and Ŷi = (F̂1(Xi,1), . . . , F̂d(Xi,d)).
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Assume that the law of the vectors Yi has a density τ with respect to the Lebesgue measure
on R

d . The kernel estimator of a copula density τ at point u is thus

τ̂ (u) = 1

hd

∫

K

(
u − v

h

)

Ĉ(dv) = 1

nhd

n∑

i=1

K

(
u − Ŷi

h

)

, (13)

where K is a d-dimensional kernel and h = hn is a bandwidth sequence. As usual, we denote
Kh(·) = K (·/h)/hd . For convenience, we will assume.

Assumption (K0) The kernel K is the product of d univariate even compactly supported
kernels Kr , r = 1, . . . , d . It is assumed pK -times continuously differentiable.

As previously, these assumptions are far from minimal. Particularly, we could consider
some multivariate kernels whose support is the whole space R

d , if they tend to zero “suf-
ficiently quickly” when their argument tends to the infinity (for instance, at an exponential
rate, like for the Gaussian kernel). As usual, the bandwidth sequence needs to tend to zero
not too quickly.

Assumption (B0) When n tends to the infinity, nh4+d → ∞.

Assumption (T0) Denoting by V(θ0) an open neighborhood of θ0, for every j = 1, . . . , d ,
there exists a measurable function Hj s.t.

sup
θ∈V(θ0)

‖∂2
θ j θ j

Fj (X j |θ j )‖ < Hj (Y j ) a.e., E[Hj (Y j )] < ∞.

Moreover, τ and every density of (Y0,Yk) are bounded in sup-norm, uniformly with respect
to k ∈ Z.

Assumption (E) For every j = 1, . . . , d ,

θ̂ j − θ0
j = n−1 A j (θ

0
j )

−1
n∑

i=1

B j (θ
0
j , Yi, j )+ oP (rn), (14)

and rn tends to zero quicker than n−1/2h1−d/2 when n tends to the infinity. Here, A j (θ
0
j )

denotes a positive definite non random matrix and B j (θ
0
j , Y j ) is a random vector. Moreover,

E[B j (θ
0
j , Y j )] = 0 and E[‖B j (θ

0
j , Y j )‖2]<∞. Typically, B j (θ, ·) is a score function. It

can be proved these assumptions are satisfied particularly for the usual maximum likelihood
estimator, or more generally by M-estimators.

To invoke Doukhan and Prieur-Coulon (2000), who state the result for the usual kernel
density estimates, we need the assumption:

Assumption (Y) The process (Yi )i∈Z is stationary and η-dependent, with ηn = O(n−a).
The densities of the couples (Y0,Yk) are uniformly bounded with respect to k ≥ 0. Moreover
the window width is assumed to satisfy nhdλ

n → ∞ as n → ∞ and a > 2 + 1
d + λ. Thus:

Theorem 5 Under (K0)with pK = 2, (B0), (T0), (E) and (Y), for every m and every vectors
u1, . . . ,um in ]0, 1[d such that τ(uk) > 0 for every k, we have

√
nhd

(
(τ̂ − Kh ∗ τ)(u1), . . . , (τ̂ − Kh ∗ τ)(um)

) −→
n→∞ N (0, �),

where � is diagonal, and its kth diagonal term is τ 2(uk)
∫

K 2.
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Such a result can be used to prove some GOF tests, exactly as in Fermanian (2005).

Remark 4 We also derive the convergence
√

nhd (̂τ (x)− Eτ̂ (x)) −→
n→∞ N

(

0, τ (x)
∫

K 2
)

under the conditions θr = O(r−a) for a > 2 + 1
d and nhdλ

n → ∞ as n → ∞, as a corollary
of theorem 1 in Doukhan and Prieur-Coulon (2000). The corresponding result also holds for
finite dimensional distributions of this process (with independent limiting distributions).

3.3 Conditional copula processes

As previously, we consider stationary time series. Their conditional distributions with respect
to past observations are often crucial to specify some underlying models. They are most of
the time more useful than the joint or marginal unconditional distributions themselves. For
instance, for a Markov process, the law of Xi conditionally on Xi−1 defines the process itself.
It can be written explicitly and sometimes simply, contrary to the joint law of (Xi , . . . ,X0).
Dependence structures, copulas can be considered similarly. Patton (2001) has introduced
conditional copulas, namely copulas associated with conditional laws in a particular way. We
first extend his definition.

Let X be a d-dimensional random vector. Consider some arbitrary sub σ -algebras
A1, . . . ,Ad and B, we denote A = (A1, . . . ,Ad).

Assumption S Let some d-vectors x and x̃. For almost every ω ∈ �, P(X j ≤ x j |A j )(ω) =
P(X j ≤ x̃ j |A j )(ω) for every j = 1, . . . , d implies P(X ≤ x|B)(ω) = P(X ≤ x̃|B)(ω).

This technical assumption is satisfied particularly when every conditional cdfs’ of
X1, . . . , Xd is strictly increasing. It is satisfied too when A1 = . . . = Ad = B. Particu-
larly, B may be the σ -algebra induced by the Ai , i = 1, . . . , d . We introduce

Definition 3 A d-dimensional pseudo-copula is a function C : [0, 1]d −→ [0, 1] such that

• For every u ∈ [0, 1]d , C(u) = 0 when at least one coordinate of u is zero.
• C(1, . . . , 1) = 1.
• For every u and v in [0, 1]d such that u ≤ v, the C-volume of [u, v] (see Nelsen (1999),

Definition 2.10.1) is positive.

Thus, a pseudo-copula is “as a copula” except that the margins are not necessarily uniform.
We get

Theorem 6 For every random vector X, there exists a random variable function C : [0, 1]d ×
� −→ [0, 1] such that

P(X ≤ u|B)(ω) = C(P(X1 ≤ u1|A1)(ω), . . . ,P(Xd ≤ ud |Ad)(ω), ω)

:= C(P(X1 ≤ u1|A1), . . . ,P(Xd ≤ ud |Ad))(ω),

for every u ∈ [0, 1]d and almost every ω ∈ �. This function C is B([0, 1]d) ⊗ σ(A,B)
measurable. For almost every ω ∈ �, C(·, ω) is a pseudo-copula and is uniquely defined on
the product of the values taken by u j �→ P(X j ≤ u j |A j )(ω), j = 1, . . . , d.

When C is unique, it will be called the conditional (A,B)-pseudo copula associated with
X. In general, it is not a copula, because of the difference between B and any Ai (in terms of
information). The latter pseudo-copula is denoted by C(·|A,B).
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Typically, when we consider a d-dimensional process (Xn)n∈Z, the previous sigma-
algebras are indexed by n, namely they depend on the past values. For instance, A j,n =
σ(X j,n−1, X j,n−2, . . .) and Bn = σ(Xn−1, . . .). Thus, conditional copulas depend on the
index n and on the past values of X, in general. Actually, we get sequences of copulas. When
the process X is one-order Markov, conditional copulas depend only on the last observed
value. In this paper, we consider two basic following cases:

(i) A j,n = (X j,n−1 = x j ) for every j = 1, . . . , d and Bn = (Xn−1 = x),
(ii) A j,n = (X j,n−1 ∈ [a j , b j ]), for some a j , b j ∈ R̄, j = 1, . . . , d and Bn = (Xn−1 ∈

[a,b]).

It is particularly relevant to specify (i) and (i i)when the process (Xn) is Markov. Even if the
process does not satisfy this property, we could consider the previous σ -algebras A j,n and
Bn .

One key issue is to state whether these copulas depend really on the past values. This
assumption is made most of the time in practice (Rosenberg (2001) among others). Only a few
papers try to modelize time dependent conditional copulas. For instance, to study the depen-
dence between Yen-USD and Deutsche mark-USD exchange rates, Patton (2001) assumes a
bivariate Gaussian conditional copula whose correlation parameter follows a GARCH-type
model. Alternatively, Genest et al. (2003) postulate Kendall’s tau is a function of current
conditional univariate variances. Now, we try to estimate conditional copulas to test their
constancy with respect to their conditioning subsets.

There exists a relation between copulas in the (i) and (i i) cases, denoted by C(i) and C(i i).
More precisely, with obvious notations, we have

C(i i)
(
FX1,n (x1|X1,n−1 ∈ [a1, b1]), . . . , FXd,n (xd |Xd,n−1 ∈ [ad , bd ]))

=
∫

[a,b]
C(i) (F1(x1), . . . , Fd(xd)|Xn−1 = u) dPXn−1(u)

P(Xn−1 ∈ [a,b]) ,

by denoting FXk,n (xk |Xk,n−1 = uk) := Fk(xk), k = 1, . . . , d .
Clearly, when the underlying distributions are continuous and when the diameter of

the box [a,b] is “small”, FXi,n (xi |Xi,n−1 ∈ [ai , bi ])� FXi,n (xi |Xi,n−1 = ui ) for every i and
every ui ∈ [ai , bi ]. We deduce C(i) � C(i i) in this case. Thus, to test the constancy of
C(i)(·|Xn−1 = u) with respect to u is almost the same thing as to test the constancy of
C(i i)(·|Xn−1 ∈ [a,b]) with respect to “small” boxes [a,b]. This intuitive argument justifies
to test the zero assumption

H0 : C(i i)(·|Xn−1 ∈ [a,b]) = C0(·) for every a and b,

against its opposite. Actually, a direct test of a similar zero assumption with C(i) is more
difficult because the marginal conditional cdfs’ need to be estimated by some nonparamet-
ric techniques. At the opposite, we do not need such tools with C(i i), because the marginal
conditioning probabilities can be easily estimated empirically.

Assume we observe a weakly dependent stationary sequence (Xi )0 ≤ i ≤ n . Denoting by
Pn the empirical measure, we see that C(i i)(u|X0 ∈ [a,b]) may be estimated by

Cn,(i i)(u|[a,b]) = Pn
(
X1,1 ≤ x1, . . . , Xd,1 ≤ xd ,X0 ∈ [a,b])

Pn(X0 ∈ [a,b])
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where we set, for j = 1, . . . , d and i ≥ 1:

F̂X j,i (t |X j,i−1 ∈ [a j , b j ]) = Pn
(
X j,m ≤ t, X j,i−1 ∈ [a j , b j ]

)

Pn(X j,i−1 ∈ [a j , b j ]) ·

x j = F̂−1
X j,1

(u1|X j,0 ∈ [a j , b j ]).

Note that the estimators F̂X j,i (·|[a j , b j ]) and Cn,(i i)(·|[a,b]) can be written as some regular
functionals of the empirical cdf of (Xi ,Xi−1).

By the same reasoning as in Lemma 3 in Fermanian et al. (2004), we check that the
“copula” Cn,(i i)(·|[a,b]) associated with the process X is the “copula” associated with the
process Y, but by replacing every a j and b j by a′

j = Fj (a j ) and b′
j = Fj (b j ), j = 1, . . . , d .

Thus, we could assume the underlying process has uniform marginals. By Theorem 1 and
the functional delta method:

Theorem 7 Assume (Yi ,Yi−1)i∈Z is η-dependent, ηn = O(n−a), a > a∗
2d , and that its cop-

ula has some continuous first partial derivatives. For every d-vectors a and b, the process
√

n(Cn,(i i)(·|[a,b])− C(i i)(·|[a,b]))
converges to a Gaussian process in D([0, 1]d , dS).

The proof is left to the reader. Thus, a test of H0 can be based on the limiting behavior of√
n(Cn,(i i)(·|[a,b])− C0(·)). The covariance structure of the limiting process is particularly

tedious. Thus, the critical values of such a test are obtained through Bootstrap procedures
(see Fermanian et al. 2004).

4 Proofs

4.1 Proof of theorem 1

4.1.1 CLT for the finite dimensional distributions of Bn

Let (s1, . . . , sm) be a fixed sequence of elements in [0, 1]d . Denote by Bn the vector-valued
process

Bn = (Bn(s1), . . . , Bn(sm)).

To prove a CLT for the vector Bn is equivalent to prove the Gaussian convergence for any lin-
ear combination of its coordinates. Let (α1, . . . , αm) be a real vector such that

∑m
j=1 α j �= 0.

Define Zi = ∑
j α j (1{Yi ≤ s j } − P(Yi ≤ s j )).

Define also Sn = 1√
n

∑
1≤i≤n Zi = ∑

1≤ j≤m α j Bn(s j ).

We use the Bernstein blocking technique, as described by Doukhan and Louhichi (1999).
Let p(n) and q(n) be sequences of integers such that p(n) = o(n) and q(n) = o(p(n)).
Assume that the Euclidean division of n by (p + q) gives a quotient k. For i = 1, . . . , k, we
define the interval Pi = {(p + q)(i − 1)+ q + 1, . . . , (p + q)i} and Q the set of indices that
are not in one of the Pi . Note that the cardinal of Q is less than (k + 1)q . For each block Pi

and Q, we define the partial sums:

ui,n = 1√
n

∑

j∈Pi

Z j , vn = 1√
n

∑

j∈Q

Z j .
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We use Lemma 11 of Doukhan and Louhichi (1999).

Lemma 4.1 Let Sn = 1√
n

∑n
k=1 Zk be a sum of centered stationary r.v’s, and set

σ 2
n = var Sn. Assume that:

lim
n→∞

1

σ 2
n

Ev2
n = 0, (15)

k∑

j=2

∣
∣
∣
∣
∣
∣
cov

⎛

⎝g

⎛

⎝ t

σn

j−1∑

i=1

ui,n

⎞

⎠, h

(
t

σn
u j,n

)
⎞

⎠

∣
∣
∣
∣
∣
∣
→ 0, for all t ∈ R, (16)

where h and g are one of the sine or the cosine function,

lim
n→∞

1

σ 2
n

k∑

i=1

E
[|ui,n |21{|ui,n | ≥ εσn}] = 0 for all ε > 0, (17)

and

lim
n→∞

1

σ 2
n

k∑

i=1

E|ui,n |2 = 1. (18)

Then Sn/σn converges in distribution to a Gaussian N (0, 1)-distribution.

Since the proof of this lemma is a direct adaptation of the proof of Lemma 3.1 in Withers
(1981), it is omitted. First note that

n∑

i = 0

cov(Z0, Zi ) < ∞ (19)

so that σ 2
n tends to a constant, see Rio (2000). If this constant is zero then the limit of Sn is 0.

If it is not, we check the conditions of the preceding lemma for the sequence Z j . To check
(15), note that, with obvious notations,

Ev2
n ≤ 1

n

∑

i, j∈Q

cov(Zi , Z j )

≤ 2m2 maxi α
2
i

n

∑

i∈Q

∑

j∈Q

η| j−i |

≤ 4m2 (k + 1)q

n
max

i
α2

i

n−1∑

r = 0

ηr

= o(1).

Consider (16). Note that g( t
σn

∑ j−1
i=1 ui,n) is a function of at most mp(k − 1) indicator func-

tions. Its Lipschitz modulus is less than t maxi αi/(
√

nσn). Similarly h( t
σn

u j,n) is a function

of at most mp indicator functions whose Lipschitz modulus is less than t maxi αi/(
√

nσn).
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Invoking (9) we get

∣
∣
∣
∣
∣
∣
cov

⎛

⎝g

⎛

⎝ t

σn

j−1∑

i=1

ui,n

⎞

⎠, h

(
t

σn
u j,n

)
⎞

⎠

∣
∣
∣
∣
∣
∣
≤ mpk

t maxi αi√
nσn

ηq , hence

k∑

j=2

∣
∣
∣
∣
∣
∣
cov

⎛

⎝g

⎛

⎝ t

σn

j−1∑

i=1

ui,n

⎞

⎠, h

(
t

σn
u j,n

)
⎞

⎠

∣
∣
∣
∣
∣
∣
≤ mpk2 t maxi αi√

nσn
ηq

= O
(
n3/2 p−1q−a)

.

Choosing p = n5/6 and q = n5/6a gives a bound tending to 0.

To prove (17), it is sufficient to show that E|ui,n |4 = O(k−2). But

E

⎛

⎝ 1√
n

∑

j∈Pi

Z j

⎞

⎠

4

= p2

n2 E

(
m∑

i=1

αi Bp(si )

)4

≤ p2

n2 m3
m∑

i=1

α4
i E

(
Bp(si )− Bp(0)

)4
,

and we conclude by applying proposition 1 for l = 2 to the couples (0, si ):

sup
i

E(Bp(si )− Bp(0))
4 = O(1).

In order to prove (18), note that (15) implies that

lim
n→∞

1

σ 2
n

var

(
k∑

i=1

ui,n

)

= 1.

Moreover, note that

∣
∣
∣
∣
∣
var

(
k∑

i=1

ui,n

)

−
k∑

i=1

E|ui,n |2
∣
∣
∣
∣
∣
≤ 2

∑

1≤i �= j≤k

|cov(ui,n, u j,n)|

≤ 2k
∞∑

j=q

η j

= O(np−1q−a+1).

Taking p = n5/6 and q = n5/6a , we get a bound tending to 0.

4.1.2 Tightness of Bn

As in Doukhan and Louhichi (1999), we prove a Rosenthal type inequality. This result is of
independent interest.
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Proposition 1 Assume that Y has uniform marginals and is η-dependent with ηr ≤ Cr−a.
For every integer l < (a + 1)/2 and s, t such that s ≤ t and ‖t − s‖1 < C :

E(Bn(t)− Bn(s))
2l ≤ 4(4l − 2)!

(2l − 1)! 32l

⎛

⎝

(

2kl

(‖t − s‖1

C

)1−1/a
)l

+ (2l)!kln
1−l

(‖t − s‖1

C

)1−(2l−1)/a
⎞

⎠ , (20)

where kl =
(

C + C2a

a−2l+1

)
.

The same result may be easily proved when the marginal distributions have a bounded
density (see Doukhan and Lang (2002)).

4.1.2.1 Proof of proposition 1 Let s ≤ t be in R
d . Denote xi (s, t) = 1{Yi ≤ t} − 1

{Yi ≤ s} − F(t)+ F(s). Because process Y has uniform margins, we get

|xi (s, t)| ≤ 1, (21)

and

|xi (s, t)| ≤ 1{Yi ≤ t} − 1{Yi ≤ s} + F(t)− F(s),

so that

E|xi (s, t)| ≤ E(1{Yi ≤ t} − 1{Yi ≤ s})+ F(t)− F(s)

≤ 2(F(t)− F(s)) ≤ 2‖t − s‖1. (22)

For any multi-index k of Z denote �k = ∏
j xk j (s, t). Roughly,

∣
∣cov

(
�k1 ,�k2

)∣
∣ ≤ 4‖t − s‖1. (23)

For any integer q ≥ 1, set

Aq(n) =
∑

k∈{1,...,n}q

|E (�k)| , (24)

then

E(Bn(s)− Bn(t))
2l ≤ (2l)!n−l A2l(n). (25)

For a finite sequence k = (k1, . . . , kq) of elements of Z, let (k(1), . . . , k(q)) be the same
sequence ordered from the smaller to the larger. The gap r(k) in the sequence is defined as
the max of the integers k(i+1) − k(i), j = 1, . . . , q − 1. If k( j+1) − k( j) = r , define the two
non-empty subsequences k1 = (k(1), . . . , k( j)) and k2 = (k( j+1), . . . , k(q)). Define the set
Gr (q, n) = {k ∈ {1, . . . , n}q ; r(k) = r}. Sorting the sequences of indices by their gaps, we
get

Aq(n) ≤
n∑

k=1

E|xi (s, t)|q +
n∑

r=1

∑

k∈Gr (q,n)

∣
∣cov

(
�k1 ,�k2

)∣
∣ (26)

+
n∑

r=1

∑

k∈Gr (q,n)

∣
∣E

(
�k1

)
E

(
�k2

)∣
∣ . (27)
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Define Vq(n) as the right hand side of (26). In order to prove that the expression (27) is
bounded by the product

∑
m Am(n)Aq−m(n), we make a first summation over the k’s with

#k1 = m. Hence

Aq(n) ≤ Vq(n)+
q−1∑

m = 1

Am(n)Aq−m(n). (28)

To build a sequence k belonging to Gr (q, n), we first fix one of the n points of {1, . . . , n}.
We choose a second point among the two points that are at distance r from the first point.
The third point is in an interval of radius r centered on one of the preceding points, and so
on. Thus

#Gr (q, n) ≤ n2(2r + 1) · · · (2(q − 2)r + 1) ≤ n(q − 1)!(3r)q−2.

We use condition (9) (here 2q replaces uLip f + vLip g) and condition (23) to deduce

Vq(n) ≤ 4n

(

‖t − s‖1 + q!
2n∑

r=1

(3r)q−2 min(ηr , ‖t − s‖1)

)

.

Denote R the integer such that R < (‖t − s‖1/C)−1/a ≤ R + 1. For any 2 ≤ q ≤ 2l:

Vq(n) ≤ 3(q−1)4nq!
(

‖t − s‖1

R−1∑

r=0

rq−2 + C
∞∑

r=R

rq−2−a

)

≤ 3q−14nq!
(‖t − s‖1

q − 1
Rq−1 + C

(a − q + 1)
Rq−1−a

)

≤ 3q−14nq!
(‖t − s‖1

C

)−(q−1)/a (‖t − s‖1

q − 1
+ C

(a − q + 1)
R−a

)

.

By assumption, R ≥ 1, so that (‖t − s‖1/C)−1/a ≤ 2R, and

Vq(n) ≤ 3q−14nq!(‖t − s‖1/C)1−(q−1)/a
(

C + C2a

a − q + 1

)

.

We find that:

Vq(n) ≤ 3q4nq!kl(‖t − s‖1/C)1−(q−1)/a . (29)

The rhs of Eq. 29 is a function of q that satisfies condition (H0) of Doukhan and Louhichi
(1999):

if 2 ≤ p ≤ q, V q−2
p (n) ≤ V p−2

q (n)V q−p
2 (n).

Then, for 2 ≤ m ≤ q − 1,

(V m/2
2 (n) ∨ Vm(n))(V

(q−m)/2
2 (n) ∨ Vq−m(n)) ≤ (V q/2

2 (n) ∨ Vq(n)).

Defining Uq = Aq(n)/(V
q/2
2 (n) ∧ Vq(n)), we see from (28) that

Uq ≤
q−1∑

m=1

UmUq−m + 1.
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Then, by invoking a Lemma of Doukhan and Louhichi (1999) based on the Catalan’s numbers
property, we get that

Uq ≤ (2q − 2)!
q!(q − 1)!

and conclude that

A2l(n) ≤ 4(4l − 2)!
(2l)!(2l − 1)!32l

⎛

⎝

(

2kln

(‖t − s‖1

C

)1−1/a
)l

+(2l)!kln

(‖t − s‖1

C

)1−(2l−1)/a
⎞

⎠,

and (20) is proved.

Oscillation of the empirical process We use this moment inequality and the techniques of
Doukhan and Prieur-Coulon (2000) to compute the oscillations of the process. Let m be in
N

d , and (s, t) be two elements of R
d , such that s ≤ t ≤ s + m/n. Let i be the element of N

d

such that s + i/n ≤ t < s + i+/n, where i+ = (i1 + 1, . . . , id + 1). Then

|Bn(t)− Bn(s)| ≤ |Bn(t)− Bn(s + i/n)| + |Bn(s)− Bn(s + i/n)|.
Because Bn is the difference between two monotone functions, we get

|Bn(t)− Bn(s + i/n)|
≤ √

n|Fn(t)− Fn(s + i/n)| + √
n|F(t)− F(s + i/n)|

≤ √
n|Fn(s + i+/n)− Fn(s + i/n)| + √

n|F(s + i+/n)− F(s + i/n)|
≤ |Bn(s + i+/n)− Bn(s + i/n)| + 2

√
n|F(s + i+/n)− F(s + i/n)|

≤ |Bn(s + i+/n)− Bn(s)| + |Bn(s + i/n)− Bn(s)| + 2d/
√

n,

because the marginal distributions of F are uniform. Thus,

sup
s ≤ t < s + m/n

|Bn(t)− Bn(s)| ≤ 3 max
0 ≤ i ≤ m

∣
∣
∣
∣Bn(s)− Bn

(

s + i

n

)∣
∣
∣
∣ + 2d√

n
· (30)

For s ∈ R
d and m ∈ N

d , define the “discrete” box U = B(m, s) = {s + i/n, 0 ≤ i ≤ m}.
For such a box, p<U = s and p>U = s + m/n are opposite vertices of the box and we define

M(U ) = max
t∈U

(∣
∣Bn(p

<
U )− Bn (t)

∣
∣ ∧ ∣

∣Bn
(

p>U
) − Bn (t)

∣
∣
)
.

Then

max
0 ≤ i ≤ m

∣
∣
∣
∣Bn(s)− Bn

(

s + i

n

)∣
∣
∣
∣ ≤ M(B(m, s))+

∣
∣
∣Bn

(
s + m

n

)
− Bn(s)

∣
∣
∣ . (31)

Following Doukhan and Prieur-Coulon (2000), we use the moment inequality (20) to bound
the distribution tail of M(B(m, s)):

Lemma 4.2 Assume that p is an integer satisfying a > 2p − 1 and p(1 − 1/a) − d ≥ 0.
Then

P (M(B(m, s)) ≥ λ) ≤ C p

K p

(‖m‖1

n

)p(1−1/a)

λ−2p, (32)

with the constants Kp = 1
2

(
2(p(1−1/a)−d)/(2p+1) − 1

)2p+1
and Cp provided by Proposition 1.
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The first condition on p is needed to use the moment inequality. The second ensures that
K p > 0. The two constraints are satisfied particularly when p = [ 1

2 (1 + d + √
1 + d2)

]
.

This induces the condition a > a∗
d .

Proof of the lemma Note that (32) is true for ‖m‖1< 2 and every s, because the box
B(m, s) contains at most two points so that M(B(m, t))= 0. Let m be fixed, such that
‖m‖1 ≥ 2 and for every i <m and every t , the lemma is true for M(B(i, t)). Define h =
(s1 + [m1/2]/n, . . . , sd + [md/2]/n). Using h as a vertex, one defines a partition of 2d sub-
boxes of B(m, s). Let i ∈ B(m, s) and denote U (i) the unique sub-box that contains i . Then

∣
∣
∣Bn(p

<
B(m,s))− Bn (i)

∣
∣
∣ ∧

∣
∣
∣Bn

(
p>B(m,s)

)
− Bn (i)

∣
∣
∣

≤ M(U (i))+
∣
∣
∣Bn

(
p>B(m,s)

)
− Bn

(
p>U (i)

)∣
∣
∣ ∨

∣
∣
∣Bn

(
p<B(m,s)

)
− Bn

(
p<U (i)

)∣
∣
∣ .

Because of the moment inequality and
∥
∥
∥p>U (i) − p>B(m,s)

∥
∥
∥

1
≤ ‖m‖1/2n,

P

(∣
∣
∣Bn

(
p>B(m,s)

)
− Bn

(
p>U (i)

)∣
∣
∣ ≥ λ

)
≤ C p

‖m‖p(1−1/a)
1

(2n)p(1−1/a)λ2p
,

and the same relation for the lower vertex yields

P

(∣
∣
∣Bn

(
p>B(m,s)

)
− Bn

(
p>U (i)

)∣
∣
∣ ∨

∣
∣
∣Bn

(
p<B(m,s)

)
− Bn

(
p<U (i)

)∣
∣
∣ ≥ λ

)

≤ 2C p
‖m‖p(1−1/a)

1

(2n)p(1−1/a)λ2p
·

¿From induction assumption and ‖p>U (i) − p<U (i)‖1 ≤ ‖m‖1/2n:

P (M(U (i)) ≥ λ) ≤ C p

K p

‖m‖p(1−1/a)
1

(2n)p(1−1/a)λ2p
·

The following result may be found in Bickel and Wichura (1971) on p. 1661: assume that

P(A ≥ λ) ≤ aλ−2p and P(B ≥ λ) ≤ bλ−2p together imply

P(A + B ≥ λ) ≤ (a1/(2p+1) + b1/(2p+1))2p+1λ−2p.

We thus deduce by using the definition of K p:

P

(
M(U (i))+

∣
∣
∣Bn

(
p>B(m,s)

)
− Bn

(
p>U (i)

)∣
∣
∣

∨
∣
∣
∣Bn

(
p<B(m,s)

)
− Bn

(
p<U (i)

)∣
∣
∣
)

≥ λ
)

≤ C p
(21/(2p+1) + K −1/(2p+1)

p )2p+1

2p(1−1/a)
· ‖m‖p(1−1/a)

1

n p(1−1/a)λ2p

≤ C p2−d

K p

‖m‖p(1−1/a)
1

n p(1−1/a)λ2p
.

Now, using P(maxi=1,...k Ai ≥ λ) ≤ ∑
i=1,...k P(Ai ≥ λ), we have

P (M(B(m, s)) ≥ λ) ≤ C p

K p

‖m‖p(1−1/a)
1

n p(1−1/a)λ2p
,

so that (32) is proved for m. �
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To prove the tightness of the sequence of processes Bn , we study the oscillations of Bn .
Let ε > 0. Let n be such that 2d/

√
n < ε/8. Let δ > 0 and assume that nδ ≥ 1. Set

m = (2[nδ] + 1, . . . , 2[nδ] + 1). Because of relation (30), we have

P

(

sup
‖s−t‖1<δ

|Bn(t)− Bn(s)| ≥ ε

)

≤ 2P

(

sup
‖s−t‖1<δ

|Bn(t)− Bn(s ∧ t)| ≥ ε/2

)

≤ 2P

(

sup
s≤t<s+m/n

|Bn(t)− Bn(s)| ≥ ε/2

)

≤ 6P

(

max
0≤i≤m

∣
∣
∣
∣Bn(s)− Bn

(

s + i

n

)∣
∣
∣
∣ ≥ ε/8

)

.

Because of relation (31) and Proposition 1, we obtain

P

(

max
0≤i≤m

∣
∣
∣
∣Bn(s)− Bn

(

s + i

n

)∣
∣
∣
∣ ≥ ε/8

)

≤ P (M(B(m, s))| ≥ ε/16)+ P

(
|Bn(s)− Bn(s + m

n
)| ≥ ε/16

)

≤ C p

K p

(‖m‖1

n

)p(1−1/a) 162p

ε2p
+ C p

(‖m‖1

n

)p(1−1/a) 162p

ε2p

≤ C p

(
1 + K −1

p

) (2d(δ + 1/n))p(1−1/a)

ε2p
162p,

so that Bn satisfies the tightness criteria for the multi-dimensional case, see Bickel and
Wichura (1971): for every ε > 0,

lim
δ→0

lim sup
n→∞

P

(

sup
‖s−t‖1<δ

|Bn(t)− Bn(s)| ≥ ε

)

= 0,

proving the result. �

4.2 Proof of theorem 2

¿From lemma 3 in Fermanian et al. (2004), it is enough to assume that the law of X is com-
pactly supported on [0, 1]d with uniform marginals. The argument relies on the functional
delta method through the function φ defined on the Skorohod space (D([0, 1], dS), φ : F1 �→
F−1

1 ; from the compact support assumption, this application is now defined on (l∞([0, 1]), ‖·
‖∞). As in Fermanian et al. (2004), we apply theorem 3.9.23 in van der Vaart and Wellner
(1996) to conclude. Note that, for any function h ∈ C([0, 1]), the convergence of a sequence
hn to h in (D([0, 1]), dS) is equivalent to the convergence in (D([0, 1]), ‖·‖∞). The result fol-
lows by applying Theorem 3.9.4 in van der Vaart and Wellner (1996) and our Theorem 1. �
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4.3 Proof of Lemma 3.1

First, let us assume that k is compactly supported. Then, by some integrations by parts, we get

√
n(F̂n − Fn)(u) = √

n
∫

[Fn(u − hv)− Fn(u)] k(v) dv

=
∫ √

n [(Fn − F)(u − hv)− (Fn − F)(u)] k(v) dv

+ n1/2
∫

(F(u − hv)− F(u)) k(v) dv.

Since v belongs to a compact subset, hv is bounded above uniformly with respect to v and
n. Equicontinuity of the process

√
n(Fn − F) thus provides the result with our assumptions.

If k is not compactly supported, we lead the same reasoning. Now, for n sufficiently large,

P

(

|√n
∫

[(Fn − F)(u − hv)− (Fn − F)(u)] k(v) dv| > η

)

≤ P

(

n1/2‖k‖L1 . sup
‖t‖<η

|(Fn − F)(u − t)− (Fn − F)(u)| > η/2

)

+P

(

2n1/2
∫

{‖v‖>an}
|k(v)| dv > η/2

)

,

which tends to zero under our assumptions. �

4.4 Proof of theorem 5

A Taylor expansion yields for every u ∈ [0, 1]d ,

τ̂ (u) = 1

nhd

n∑

i=1

K

(
u − Yi

h

)

− 1

nh

n∑

i=1

d K

(
u − Yi

h

)

(Ŷi − Yi )

+ 1

2nh2

n∑

i=1

d2 K

(
u − Y∗

i

h

)

(Ŷi − Yi )
⊗2

= τ ∗(u)+ R1(u)+ R2(u),

for some random vectors Ŷ∗
i satisfying ‖Ŷ∗

i − Yi‖ ≤ ‖Ŷi − Yi‖ a.e.
Note that τ ∗ is the kernel density estimator studied in Doukhan and Louhichi (2001),

when applied to the weakly dependent sequence (Yi )i∈Z, which is improved in the paper by
Doukhan and Prieur-Coulon (2000). Thus we get fidi convergence of

√
nhd(τ ∗ − τ).
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It remains to prove that R1(u) and R2(u) are negligible. Let us first study R1(u). Denote
partial derivatives wrt u j by ∂ j ,

R1(u) = − 1

n2h

∑

i,k

d∑

j=1

∂ j K

(
u − Yi

h

)

∂θ ′
j
Fj (Xi, j |θ0

j )A
−1
j (θ

0
j )B j (θ

0
j , Yk, j )

+OP

⎛

⎝ 1

n2h

∑

i,k

d∑

j=1

∣
∣
∣
∣∂ j K

(
u − Yi

h

)∣
∣
∣
∣ sup
θ∗

j

‖∂2
θ j θ

′
j
Fj (Xi, j |θ∗

j )‖‖θ̂ j − θ0
j ‖2

⎞

⎠

+oP

(rn

h

)
,

where θ∗
j belongs a.e. to a neighborhood of θ0

j for every j . Since the process (Yi )i∈Z is

weakly dependent, and since B j (θ
0
j , Yk, j ) is centered, we get

E

[

∂ j K

(
u − Yi

h

)

∂θ ′
j
Fj (Xi, j |θ0

j )A
−1
j (θ

0
j )B j (θ

0
j , Yk, j )

]

= O
(η|i−k|

h1+d

)
,

and ER1(u)= O

(
1

nh2+d

)

= o

(
1√
nhd

)

· Moreover, with obvious notations, the main term

in the expansion of ER2
1(u) is the expectation of

1

n4h2

n∑

i1,i2=1

n∑

k1,k2=1

d∑

j1, j2=1

∂ j1 K

(
u − Yi

h

)

∂θ ′
j1

Fj1(Xi1, j1 |θ0
j1)A

−1
j1
(θ0

j1)

×B j1(θ
0
j1 , Yk1, j1)(∂ j2 K )h(u − Yi2)∂θ ′

j2
Fj2(Xi2, j2 |θ0

j2)

×A−1
j2
(θ0

j2)B j2(θ
0
j2 , Yk2, j2)

:= 1

n4h2

∑

j1, j2

∑

i1,i2

∑

k1,k2

Ti1, j1 T̃k1, j1 Ti2, j2 T̃k2, j2 .

We consider every relative positions of the indices i1, i2, k1, k2 ( j1 and j2 do not play any role).
In each cases, weak dependence allows us to bound the expectation of Ti1, j1 T̃k1, j1 Ti2, j2 T̃k2, j2 .
As in Theorem 5 of Fermanian (2005), ER2

1(u) = o((nhd)−1) and R1(u) = oP ((nhd)−1/2).
The second term R2(u) is simpler because

R2(u) = OP

(
1

h2+d
· 1

n

)

= oP

(
1√
nhd

)

,

which proves the result.
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